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Abstract

Developing parallel programs which run on distributed computer clusters introduces additional
challenges to those present in traditional sequential programs. Debugging parallel programs requires
not only inspecting the sequential code executing on each node but also tracking the flow of messages

being passed between them in order to infer where the source of a bug actually lies.

This thesis focuses on a debugging too called The Distributed Application Debugger which targets
a popular distributed C programming library called MPI (Message Passing Interface). The tool is
composed of multiple components which run together seamlessly to provide its users an effective way

to remotely launch, replay, and analyze parallel programs both while they are running and after they

complete.
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Chapter 1

Introduction

Anyone who has developed software before will likely agree that bugs will be encountered along
the way. No matter how careful you are, logic errors, memory mismanagement, race conditions,
inaccurate execution path assumptions and a whole host of other issues will be encountered from
time to time. These issues are acceptable, understandable and expected when designing software. As
a result of the popularity of sequential programs, and the common understanding that debugging
will always be part of their development, many exceptional debugging resources have been created to
help the developer analyze and step through sequential code. These tools are flexible in order to let
the user pause, rewind, inspect, and compare the execution of the lines of their programs.

Developing parallel programs which run on distributed computer clusters introduces additional
challenges to those present in traditional sequential programs. When debugging parallel programs,
one needs to be able to inspect both the sequential code executing on each node and track the flow of
messages being passed back and forth between them in order to infer where the problem actually lies.
One such distributed programming language is called MPI [Don94]. It stands for Message Passing
Interface and is a C library which utilizes the power of distributing work across processors while
staying in sync and reporting progress by passing messages.

Because MPI code is just sequential code being run on a cluster of computers, it inherits all of
the same common debugging errors present in sequential programs. In addition to these familiar
‘sequential’ bugs, is another set of completely different 'parallel’ bugs which impede the engineers even
more. The Cause and Effect Chasm [Eis97], for instance, is the notion that where a bug becomes
noticeable may not be near where the problem actually was introduced. It could be introduced due
to any number of mistakes including initializing the value of a counter incorrectly earlier in a method,
not allocating enough memory in a constructor, or overwriting a variable incorrectly a thousand lines

earlier. Regardless of what the root of the problem turns out to be, when you stumble across its
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symptoms, you will inevitably begin retracing to find out where it originated. This is difficult enough
in sequential programs running on the same processor, but what if the bug actually initialized much
earlier due to the behavior of code running on a completely different machine? What if an error was
introduced during the messaging phase because of a wrong address, or data type, or count? Trying to
track down the root of a problem across computers can make bug finding even harder. Another major
difficulty comes in just organizing tracing information printed to the screen. Because print statements
are often the first form of tracing information, the user either has to inspect the screen of all of the
computers running on the cluster, or sift through all of the data printed to a common monitor should
the processes all be running on the same machine. Regardless, although printing trace data to the
screen is a very popular and useful technique in the world of sequential programming, it becomes an
unorganized, overwhelming Information Overload [PJ12] problem quite quickly in the distributed
world. Perhaps the most prominent difference between debugging sequential code and distributed
code is the inability to just halt execution of the program when attaching a debugger. Attaching a
debugger, such as GDB [GDB13], for example, halts the execution of a process immediately which
gives the developer the chance to inspect all the variables of the system as it steps through the
execution of the program one line at a time. This is very helpful because one line may have a side
effect on another one that the developer may never had thought of initially. In a distributed system,
however, attaching a debugger to a process does not halt the execution of the program because even
though one process stops, the rest of the processes continue on.

These are just some of the problems that I wanted to address with the Distributed Application
Debugger. Among other things, I wanted to give the user a centralized and organized space to
examine the output of each node while being able to also inspect and match the messages being
passed between them. I wanted to provide them with a way to not only replay a session but also to
halt a session in order to step through each node’s execution while inspecting all the variables of
a system. Finally, I recognized that clusters of computers are often housed a universities or super
computer centers around the world. This led us to insisting that the application be able to run
remotely and behind any number of impeding computer servers that needed to be logged into first

before being able to access the actual computer cluster.
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Chapter 2

Background and Related Work

The Distributed Application Debugger is a system of applications created because the need for
a debugging tool for MPI [Don94| is needed. This chapter focuses on the reasons why tools for
debugging parallel programs are necessary, as well as the the motivating factors behind the features
that were included in this one. It introduces the MPI programming language and describes the
portions of it which became the focus of the Distributed Application Debugger. I also talk about two
other commercially available debugging tools used within the community, and what they have in
common with mine and also what is different. Finally I discuss the software development procedure
that was used in order to ensure that the Distributed Application Debugger would successfully deliver

its key features

2.1 Debugging Parallel Programs

Research by Cherri Pancake discussed in a keynote address on parallel computing systems [Pan93]
suggests that tools for parallel programming and debugging are often found to be unhelpful for users
because their developers do not spend enough time trying to understand what the root problems that
their users really need addressed are. In an effort to better understand what problems users debugging
parallel programs encountered most often, and what problems took the most time debugging, a
survey was given by Dr. Jan Pedersen to two different sets of graduate students at the University of
Nevada, Las Vegas over the course of two years. The results of the first survey, presented in [Ped06],
and the second survey, presented in [PJ12], agreed with each other and collectively served as the

motivation for the development of the Distributed Application Debugger.
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2.1.1 The Survey

The survey based much of its foundation around the model for constructing parallel programs
known as PCAM [Fos95]. This four part model breaks parallel programs into two areas dealing
with correctness, Partitioning and Communication, as well as two areas dealing with performance,
Agglomeration, and Mapping. Although the performance categories are important when measuring
the quality of a parallel system, the survey focused only on the two categories characterized by
correctness because it was decided that a program should first be modeled correctly before being
optimized.

The first of the correctness categories, Partitioning, deals with the task of partitioning both
the data and functionality of the algorithm being implemented. It can be further sub-categorized
as Data Decomposition, which covers developing code structured to deal with managing memory,
modeling data structures etc., and Functional Decomposition which deals with the organizational side
of defining the responsibilities of each node and establishing roles for architectures such as pipelining
and master/slave relationships. The second of the correctness categories, Communication is the task
of implementing interprocess communication. It can also be broken down into two sub-categories:
Message Errors which deals with correctly addressing send and receive calls between the appropriate
destination and source nodes, and Protocol Specifications which deals with asynchronous message
calling and buffering which lead to unexpected results and side effects. These 4 subcategories
from [Fos95], along with a fifth classification, Sequential, which deals with bugs that you would
find in any sequentially running program such as mistakes with conditionals, method calls, race
conditions, pre and post conditions, and algorithm modeling to name a few, make up the 5 categories

that students were asked to classify their bugs into.

2.1.2 Survey Results

The students were asked to keep records of each time they spent time debugging their parallel code
and log which category their bug best fell into. The graph shown in Figure 2.1 and data recorded in
Table 2.1 show the results of the survey as they completed each of seven projects throughout the
semester and categorized their bug types in the process.

Complimenting the bug categorization was a questionnaire based on Eisenstadt’s research [Eis97]

which stated that sequential errors are categorized by 3-dimensions. The 3 dimensions are:

e Dimension 1: Why is the error difficult to find?

e Dimension 2: How is the error found?
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Figure 2.1: Error classifications of a class of graduate students taking a parallel programming class.

Data Functional| Sequential| Message | Protocol| Other

Decomp.| Decomp. Error Error Error
Average Time 19.9 68.1 24.3 61.4 50.0 30.6
Total Time Spent 278 545 1,846 1,536 451 545
# Errors 14 8 76 25 9 8
Total time Spent in % 5.67% 11.12% 37.67% 31.34% 9.20% 5.0%

Table 2.1: Debugging time for the bugs reported in the survey.

e Dimension 3: What is the root cause of the error?

Based on Eisenstadt’s 3 dimensional model of sequential errors, the class indicated how their bug
was classified within each of the 3 dimensions. In Dimension 1, the Why, the popular answers were
the Cause and Effect Chasm, mentioned in the introduction, and Inapplicable Tools. In Dimension
2, the How, the overwhelmingly most popular answer was by using Print Statements. Finally for
Dimension 3, the What, the popular answers were pointers, index references outside of an array, and

faulty design logic.

2.1.3 Survey Conclusion

The survey, inspired by Pancake’s observation that parallel debugging tools were being developed
without real understanding of user problems, indicated several results which became the foundation
for the development of the Distributed Application Debugger. First, based on the results indicated

in Figure 2.1, the overwhelming majority of the bugs where categorized as ’Sequential Type’ bugs.
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Secondly, based on the amount of time spent on each type of bug, it is clear that 'Message Errors
are very costly errors, accounting for nearly as much time spent as sequential bugs despite having
just a fraction of the number of bugs reported. Thirdly, based on the 3 dimensional questionnaire
based on Eisenstadt’s research, it is clear that print statements are still a very popular debugging
technique, which agrees with Pancake’s results [cMP94] which found that up to 90% of all sequential
debugging is done using print statements.

After analyzing these results, several conclusions were made about features that would be needed
for the parallel debugging tool. First, based on the number of sequential bugs reported by the
students, it would be helpful if T could present a view of the system broken down as a series of
sequential programs running rather than as one large distributed program. Any data reported, such
as the order of commands being executed, would have to carefully be recorded in the exact order
that it was executed on each node and data such as line numbers would need to be included. Also,
care would have to be given to give a view of the code executed sequentially per node, but without
overwhelming the user with data extracted from nodes that are known to not be the root of their bug.
Secondly, based on the amount of time spent on Message Error types of errors, it was determined
that the tool would have to help match up send and receive commands. In addition to matching up
send and receive commands, it would be valuable if the tool could indicate 'unmatched’ messages
immediately. This would alert the user that there might be a message addressing error early and
allow them to fix the problem proactively which would lessen the Cause and Effect Chasm distance
between when the bug was introduced and when it was noticed. Thirdly, it is was clear that students
leaned on ’print’ statements when debugging their code. Although this is generally considered a
poor technique, its popularity made it clear that a separate console for each node would have to be
displayed on the front end to help the users analyze the print statements of each node. At the same
time, however, I felt an obligation to encourage them to use more advanced techniques to replace
the use of print statements. It was decided to pursue integrating GDB into the application and
allowing the users to conveniently attach it to whatever nodes they wanted. This would allow us to
leverage the power of an already mature debugging tool, and show the students that there were more
sophisticated alternatives to dividing and inspecting their code with print statements.

In addition to the features derived from the research, it was decided that there were others that
would make the application a truly helpful tool. Importing The Runtime of the debugging framework,
for instance, should be transparent to the user and work without the user having to annotate special
sections of their code as ’debuggable’ etc.. Also, the application should include options to record
and replay sessions that produced especially peculiar results. Finally, the user should be able to

use the application from home. This last feature introduced a tremendous amount of extra work to
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manage the logistics of logging into a university cluster, but I felt that it was worth it. If students
had to be present at the computer lab in order to gather the debugging data, they likely would not
bother using the tool since traveling to the university would take as much time as debugging with

rudimentary techniques while logged in from home.

2.2 MPI

The Distributed Application Debugger is a tool meant to investigate Message Passing Interface code
written in C. Before moving onto the implementation of the debugging tool, I would like to touch on

the framework itself and indicate what parts of it are supported by the tool.

2.2.1 Framework

The MPI framework was developed in order to give a standard implementation of a library that
supports message passing between computer processors running designated sections of code of a

program in parallel. Its goals include high performance, scalability, and portability.

General Structure

The general structure of an MPI program is to first issue an MPI_Init() command and to finish
with an MPI_Finalize() command. The MPI program, itself, run between these two calls. After
initializing, the node will generally determine what rank it has been assigned within the system
by calling MPI_Comm_rank(). Also, it is common to request the total number of nodes within the
system by issuing an MPI_Comm_size() command. This allows the system to know the range of

nodes available for messaging and begin to split up the work between the available nodes.

Messages, Buffering and Blocking

At the core of MPI is the actual passing of messages between nodes using send and receive commands.
All send commands have a destination parameter which indicates the recepient node that the message
should be sent to along with a tag (integer value) that can act as an identifier when the receiver
decodes the message. The send message can either be in the form of a blocking message, MPI_Send(),
or in the form of a nonblocking message, MPI Isend(). The blocking and nonblocking aspects
of the send commands is with regard to whether the user can be ensured that it is safe to edit
their application buffer. The blocking MPI_Send() is guaranteed to block until the data is either
delivered to a receiver or safely copied into a system buffer. The nonblocking MPI_Isend() command,

however, returns immediately to the caller without ensuring that the data has been copied out of the
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application buffer, making reusing it unsafe. Like the send commands, the receive commands also
come in both a blocking and a nonblocking form. The blocking version, MPI_Recv(), halts progress
of the process entirely until a message has been received. The nonblocking version, MPI_Irecv(),
returns immediately as expected and gives the user the option to poll a memory address known as
the 'request’ to find out if the corresponding receive buffer has safely completed receiving a message.
Like the send command, the receive commands have an address parameter, known as source, and a
tag used to filter multiple messages coming from the same source, but unlike the send commands,
these values are optional. When the receiver wishes to forgo filtering on a specific source and/or
specific tag value, it can be specified as a wild card value: MPI.ANY_SOURCE and MPI_ANY_TAG
for source and tag respectively. Because these values are optional, receive commands include an extra
parameter of type MPI_Status which can be referenced to find the actual source and tag values once

the receive has been completed.

2.2.2 Supported Commands

The Distributed Application Debugger does not support all of the commands found within the MPI
library [ANLD13], but does support 12 core commands making analyzing the initializing, message
passing, synchronizing and finalizing of a typical MPI program possible. Table 2.2 displays the scope
of the commands available for debugging within the Distributed Application Debugger along with

their signatures.

2.3 Other tools

The Open MPI Project’s frequently asked questions website [Pro13] characterizes how to debug

applications running in parallel as a difficult question to answer. In their words

”Debugging in sertal can be tricky: errors, uninitialized variables, stack smashing, ...
etc. Debugging in parallel adds multiple different dimensions to this problem: a greater
propensity for race conditions, asynchronous events, and the general difficulty of trying to

understand N processes simultaneously executing — the problem becomes quite formidable.”

The project recommends two enterprise level debuggers, DDT (short for the Distributed Debugging
Tool) by Allinea Software [Sofl13a] and TotalView by Rogue Wave Software [Sof13b], to aid in the
complicated task of debugging MPI programs. Because of this endorsement, I felt that it was
important to touch on some of their features and how they may be a better tool of choice at times

from the Distributed Application Debugger.

www.manaraa.com



Command Description

MPI_Init(int *argc, char ***argv) Initializes the MPI environment

MPI_Comm _rank( MPI_Comm comm, int *rank ) Determines the rank of the pro-
cess in the cluster

MPI_Comm_size( MPI_Comm comm, int *size ) Determines the size of the cluster

MPI_Send(void *buf, int count, MPI_Datatype datatype, int | Performs a blocking send
dest, int tag, MPI_Comm comm)
MPI_Recv(void *buf, int count, MPI_Datatype datatype, int | Blocking receive for a message
source, int tag, MPI_Comm comm, MPI_Status *status)
MPI Isend(void *buf, int count, MPI_Datatype datatype, int | Begins a nonblocking send
dest, int tag, MPI_Comm comm, MPI_Request *request)
MPI Irecv(void *buf, int count, MPI Datatype datatype, int | Begins a nonblocking receive
source, int tag, MPI_Comm comm, MPI_Request *request)
MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status | Blocking test for a message
*status)
MPI_ Iprobe(int source, int tag, MPI_Comm comm, int *flag, | Nonblocking test for a message
MPI _Status *status)
MPI_Wait(MPI_Request *request, MPI_Status *status) Waits for an MPI request to com-
plete

MPI_Barrier( MPI_Comm comm ) Blocks until all processes in the
communicator have reached this
routine.

int MPI Finalize(void) Terminates MPI execution envi-
ronment.

Table 2.2: The MPI commands supported by the Distributed Application Debugger.

It is remarkable how many features that DDT and TotalView have in common. Both GUIs are
very debugger-centric in the way that the viewer is always focused on source code and the node
specific view is just which line of it the node is located on. Because of this, other features, such
as a graphical views of the messages being sent, are done with popup windows. The Distributed
Application Debugger took great lengths to not have views presented in popups so that the user is
not tasked with juggling them. The Distributed Application Debugger by contrast, is more of an
analysis tool which integrates a debugging feature when needed. Because DDT and TotalView are so
debugger centric, the MPI program being debugged must be compiled with debugging symbols. This
is not the case with the Distributed Application Debugger because this is only a requirement when
actually attaching GDB.

Both DDT and TotalView offer great features that allow inspection of the code at both the
process level and the thread level. They display their message stacks in graphical form, whereas the
Distributed Application Debugger displays its messages in tabular form. Also, both not only are
able to record and replay MPI sessions, but also allow the user to 'rewind’ a session, whereas the

Distributed Application Debugger always goes forward. Most impressively, they both can scale to
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over 100,000 processes which the Distributed Application Debugger would not be able to keep up

with. This scalability comes with a large price, however, with DDT costing $696.00 for an academic

or government workstation license, and TotalView costing over $1,000.00.

The Distributed Application Debugger’s strengths lie in its simplicity. It can be configured to

run remotely, but does not require any applications to be running on the remote machines prior to

the session beginning.

It copies, compiles, launches, and cleans up any applications needed in the

communication line without requiring them to be already running on the remote computers as both

DDT and TotalView do. It also leverages the extremely popular and powerful GDB application which

most students are already familiar with. This cuts down on its learning curve and further assists the

students in focusing on their parallel programs as just a set of sequential programs running. The

Distributed Application Debugger’s layout presents a useful layout for viewing 2 or 3 nodes at a time

because their values are displayed side by side without have to switch between them, while the other

two most popular debuggers display one main code display and request that the user keeps switching

between which node to report on.

Figure 2.2 and 2.3 displays DDT’s main front end GUI display and Figure 2.4 and 2.5 displays

the same for TotalView.
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Figure 2.3: A buffer inspection popup within Allinea Software’s DDT application.

2.4 Software Development and Risk Assessment

Among much evidence presented in [Gib94] identifying the alarming number of software projects
which never produce a successful end product, is a particularly disturbing study performed by the
Software Engineering Institute [SEI13], a U.S. Department of Defense research institution at Carnegie
Mellon University. The study evaluated the abilities of 261 software organization to manage and
create software that met its customer’s needs on a 5 point scale, where 1 indicates chaos and 5
indicates the paragon of good management. The study found that about 75 percent were stuck at
level 1 with no formal process, no measurements of what they do, and no way of knowing when they
are on the wrong track or off the track together. The next 24 percent of projects were only at a
level 2 or 3. Knowing that so many software projects tend to fail to deliver on their initial intention,
and not wanting the Distributed Application Debugger to become one of them, we employed risk
management [Boe91] to help us deliver a successful product plan.

The initial phase was spent making a list of core features that we were going to include in
the application and, from those, extracting a risk list [Boe91] of features which had degrees of
uncertainty, technical constraints, or unrealistic development scopes which could eventually make
them undeliverable. The goal was to develop, or at least prototype, these features first in order to

be sure that they were attainable. I took an iterative development approach, as outlined by Craig
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Figure 2.4: The GUI display of Rogue Wave Software’s TotalView application.

Larman [Lar07], of writing small, but complete, aspects of the items on the risk list and then met
regularly with Dr. Pedersen to test them and discuss their risk level. As Larman put it, ”It is better
to resolve and prove the risky and critical design decisions early rather than late — and iterative
development proves the mechanism for this.”. Below is the list of high risk features that I came up

with.

The Risk List

1. Integrating GDB
2. Recording and Replaying
3. Running Remotely

Integrating GDB

I decided that integrating GDB into the application was absolutely essential for the product to be
successful. I felt that students needed to have an alternative to using print statements that was still
easy to invoke when needed. I also felt that if I was going to call the product a debugger, it needed to

offer features like stepping into and over lines of code, variable inspection, and call stack retrieval at
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Figure 2.5: A message illustration popup within Rogue Wave Software’s TotalView application.

the very least. Without these basic features, the tool would really just be a profiler used to analyze,
rather than inspect. Leveraging GDB specifically was an attractive choice for several reasons. As
indicated in [MS08], GDB is the most commonly used debugging tool among Unix programmers
and the foundation for other front end GUI wrappers such as DDD [DDD13] and Eclipse [Ecl13].
GDB works by first attaching itself to a process and then interacting with the user by taking in
instructions from stdin, and printing the results to stdout.

I felt this particular feature lent itself well to prototyping which, as detailed in [War09], offers
several advantages, among which is a very low-investment-to-benefit ratio. The initial prototype
for this feature was a program which could take in a command from the console to start, and then
launch a child GDB process that would attach itself to a test program. The parent process then
needed to take in commands from the console and pass them along to the GDB process’s stdin and,
likewise, read from GDB’s stdout and pass those values back to the parent. After another couple
of weeks of coding, we met again to talk about the risk of the feature. I had shown that I could
duplicate the file descriptors of a child process forked from the prototype and setup up a threading
model that could handle piping commands from the prototype’s console window into GDB, and also

piping the output of GDB back to the prototype. The initial prototype was promising but it lacked
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one important feature. Since I was planning a remote debugger, was a prototype that only printed
to the console really applicable yet? I went back and did another iteration of development, which
extended the prototype to write and read from a TCP port passed in at its command line, rather
than its console. I called the prototype the ’‘GDB Bridge’, included in Appendix A.6, and assessed
that integrating GDB into the application was possible.

Recording and Replaying

Research by Thomas J. Leblanc and John M. Mellor-Crummey [LMC87] illustrate that since parallel
programs often include nodes passing messages asynchronously, the execution behavior of a parallel
program in response to a fixed input is clearly indeterminate. Given this information we felt that it
was crucial that the Distributed Application Debugger be able to record the execution of an MPI
session and allow the user to both inspect it by hand and replay it through the code. This would
give the user the ability to inspect unexpected occurrences that were not always recreatable without
having to run the application over and over again hoping to go down the same execution path. I
also felt that this feature was a high risk one that needed some development early to determine how
it would be done. Dr. Pedersen had conceived the idea to redirect the calls to MPI to an external
library [Ped03], which became the foundation for The Runtime component described in section 3.3.
Given that The Runtime component would be notified each time a user made and MPI call, it was
conceivable that we could record the parameters and return values of each call to an MPI method
to file. T decided to represent the MPI sessions using the XML standard [XML13] because of its
inherent ability to represent levels of scope, its great readability, and its wide adoption due to the
endorsement by the World Wide Web Consortium.

I started writing an XML library, the first of several that I would write for this project, and we
met regularly to evaluate its progress. I started out first by defining a structure which had XML
fields such as Name, Value, Attributes, and Children, and then wrote functions to convert those values
into XML compliant strings. After that, I wrote more functions to store the XML structures to file
and to read them back into memory. Once my XML library was complete, we met to design an MPI
XML schema which I could use to serialize each of the 12 MPI commands I was supporting. Once
the schema structure was decided on, as illustrated in Appendix A, another iteration was started in
which I wrote another library, called MPI_XML, which used the XML library created in the previous
iteration to serialize each MPI command according to the agreed upon schema. After that, another
iteration was made to read the commands back into memory so that a recorded MPI session could
be replayed precisely how it was before. We met again and agreed that I now had a solution for

recording and replaying an MPI session.
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Running Remotely

The final feature from the risk list was the ability for the Distributed Application Debugger to run
remotely from anywhere. I felt that if students had to commute to the university computer lab to
use the debugging tool, that it would ultimately discourage them from using it. Given this need it
became obvious that the application would actually need to be split into several applications, and
that I needed to identify what they were before we could proceed. This began a two phase design
phase in which we ultimately settled on the four component architecture described in Chapter 3.

In the first phase, I focused on sketching out a high level design of the system. I identified that
there would obviously be a front end GUI running at the student’s home for them to get their
debugging information from. Also there would obviously be a runtime component running at the
university which I had already developed record and replay features for. I also devised that there
would need to be some Call Center component running between the two which would ultimately be
in charge of communicating the front end’s commands to The Runtime, along with a series of Bridges
in case the cluster was not accessible directly. I then turned my attention to designing the user
experience that the user would have when interfacing with the client. Unger and Chandler [UC09)
suggest the practice of using 'wireframing’, which is the idea of laying out the behavior of a front
end GUI before you actually code it, as a way of bringing visual ideas to your project team quickly.
I installed one implementation of it called Balsamiq Mockups [Ball3] and sketched out the front end
user experience and a high level communications overview. We discussed several iterations of the
wireframes, examples are shown in Figures 2.6 and 2.7, and ultimately agreed on an architecture
allowing remote debugging before writing any code at all.

In the second phase, I worked on confirming that a front end written in C# running on Windows,
could SSH into a series of computers running UNIX, securely copy folders of debugging files from
node to node, and launch a prototyped Bridge and Call Center. I used the Tracer Bullet design
methodology [HT99], which gets its name from the way that a sniper can confirm that the path
of his bullet will hit his target by firing tracer bullets, which leave a phosphorus trail behind, first.
The goal of this technique is not to write any actual code, but rather to first connect prototypes
together to prove that a communication path will actually work. I found an open source library
called SharpSSH [Shal3] which allowed me to initiate an SSH connection from a front end written in
C# to a computer running an SSH Server. Once I was able to do that, I wrote C# applications that
would temporarily stub in for The Bridge and The Call Center and practiced copying them between
Linux computers at my own home. I installed Mono [Mon13], the .NET framework for UNIX, on
several Linux machines so that I could actually launch the C# stub applications after SSHing in.

After a few iterations I had worked out the logistics of SSHing, copying, launching and connecting,
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that gets described in Section 3.1.1, which ultimately gave the user a connection to The Runtime
while connected remotely. After this I was confident that my high risk features could be met, and

that I would ultimately deliver a working product.
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Chapter 3

The Distributed Application

Debugger

The need for a tool for debugging MPI programs became apparent when the results of a survey of
graduate students showed that most of their debugging was done using print statements. Although
commercial debuggers are available that can monitor distributed processes at the petascale level,
research by [BHO04] found that 80 percent of developers used less then 4 processes when debugging
their code. With this in mind I felt that a debugging tool focused on the common debugging needs
of its target audience, rather than on extreme scalability, could still be very effective. This chapter
focuses on the implementation details of the Distributed Application Debugger and its three major
components: The Client, The Call Center, and The Runtime. It describes the messages passed
between them during an MPI debugging session, and concludes with what happens when GDB is

introduced.

3.1 The Client

The Client is the user facing portion of the application. It is meant to help the user connect, control,
and analyze MPI code running on a remote cluster of computers. The layout is meant to be simple
and is broken into 3 areas, the tool bar, the node panels, and the configurations as displayed in
Figure 3.1. Initially the user must enter credentials to establish a remote connection to the MPI

cluster and then can begin debugging sessions.
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Figure 3.1: The Client without any fields populated.

3.1.1 Establishing a Remote Connection

In order to begin a debugging session, the user must first establish a connection into the MPI
cluster. The user supplies his or her credentials in the Configurations area of The Client as displayed
in Figure 3.2. It is not uncommon for a computer within an MPI cluster, however, to only be
accessible from within its private network. In the case of some universities, for instance, students
who wish to remotely access a computer within an MPI cluster, are asked to SSH into the campus
student computer lab first. Once they establish a connection to a computer within the university
network, they can then establish a second session to a computer within the cluster. The Distributed
Application Debugger allows the users to input as many connections as they must make in order
to finally reach the MPI cluster. When multiple addresses are entered, connections are made in
sequential order, starting from the top of the list. Figure 3.3 shows the scenario where a user needed
two connections in order to reach the computer cluster.

Once the user has provided the credentials needed to log into the MPI cluster, the Connection

button kd will become enabled in the tool bar, and the user can establish the remote connection by
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Figure 3.2: The Client configured for a direct connection to The Call Center.
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Figure 3.3: The Client configured for an indirect connection to The Call Center using Bridges.

pressing it. Once The Client has established a connection, it copies some debugging files to the folder
indicated by the Transfer Directory from Figure 3.2. After the debugging information is copied,
The Client compiles the debugging files and launches the second main component, The Call Center.
In the case that the user provided multiple addresses for The Client to log into, the files will be
copied up to each computer in sequence and a helper application called The Bridge, included in
Appendix A.7, will be launched until the last connection is reached and The Call Center is launched.
Figure 3.4 shows the system when The Client connects directly to the MPI cluster, and Figure 3.5
shows when extra connections are involved.

The configuration area in Figure 3.2 includes one more field which has not been talked about
yet- namely the Connection Port. Once it has been established that The Bridges and Call Center
are running, The Client will then establish an outgoing TCP connection to the first computer that
it logged into on the connection port that was supplied. This computer then subsequently makes
a connection to the next computer on that computer’s connection port and so on until The Call

Center has been reached. This connection port is provided to The Bridges and Call Center on their
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Figure 3.4: The Client after it has successfully connected to a remote computer and launched The
Call Center.

The Client | The Bridge(s) |} The Call Center

Figure 3.5: An updated overview with bridges included.

command lines as shown in Tables 3.1 and 3.2, and once the TCP connections are established, the

remote connection sequence is complete. An updated illustration of the system is shown in Figure 3.6.

Command Line
./callCenter PORT-NUMBER

Arguments
PORT-NUMBER | The TCP port to listen for incoming connections on.

Table 3.1: The command line for launching The Call Center.

21

www.manharaa.com



Command Line
./tepBridge -b SRC-PORT-NUMBER DEST-IP-ADDRESS DEST-PORT-NUMBER

Arguments

-b An indicator that the application is running in 'Bridge’ mode.
SRC-PORT-NUMBER The TCP port to listen for incoming connections on.
DEST-ADDRESS The address to make an outgoing TCP connection to.
DEST-PORT-NUMBER | The port to make an outgoing TCP connection to.

Table 3.2: The command line for bridges.

grENs

TCP Comnectionis

The Client ] The Bridge(s) The Call Center

Figure 3.6: The system connected via TCP sockets.

3.1.2 Running a Debugging Session

Once the remote connection has been established, the user can start debugging. In the tool bar area
of The Client, shown in Figure 3.1, are the fields for supplying the location of the executable to
debug as well as the host file and the parameters. A node counter box is also present and is used to
choose how many processes they would like to run. All information extracted from an MPI node
during a debugging session is returned and displayed in the Node Panels section of The Client, also
shown in Figure 3.1. A panel for every node present in the counter box is displayed in the node
panels section. All node panels are initially shown within this area, but they can be collapsed by
pressing the collapse button k& present in each one of them. Figure 3.7 shows a session configured
to debug a program called TestAdd with 2 node panels displayed, and Figure 3.8 shows the same
session with one of the nodes collapsed to the tray.

Fach node panel has three tabs, consisting of the Console tab, the Messages tab, and the MPI
tab, in which it will display data about the debugging session. Figure 3.9 shows an illustration of

each of the tabs before they have received debugging data. Although analyzing the data is saved for
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Figure 3.7: A debugging session configured for two nodes with both displayed.

chapter 4, I would like to touch on each of them here to give a general idea of what they are used for.

The Console Tab displays anything written to stdout from the node. This area primarily helps
keep track of print statements used for debugging or for status within each of the nodes. Routing
them to their own panel helps the user focus on the status output of one node at a time rather
than viewing a jumble of nodes printing to the same monitor or physically moving in the case they
get printed to separate monitors. The Messages Tab displays all of the interprocess messages sent
between nodes within the MPI framework. Analysis can be done on this screen to match send and
receive messages, highlight unmatched messages, and request the buffer values of recorded messages
as shown in chapter 4. Finally, the MPI Tab displays all commands issued by the application. They
are displayed in the order that they were executed along with their line numbers, so that the user
can quickly see the path that their execution took. Both the Messages and MPI tabs offer a details
section which shows parameter values passed into the command’s method, as well as a filter, useful

in selecting only specific types of commands for viewing.
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Figure 3.8: A debugging session configured for two nodes with one collapsed.

Once the debugging session information has been entered into the tool bar, the user can now

begin to debug. A debugging session is run under one of three modes: PLAY, RECORD, or REPLAY and

is issued within a general network messaging envelope used by all commands within the system and

illustrated in Figure 3.10.

As detailed in [Hel00], all messages within the envelope start with a Start of Header control

character, with the value 0x01, indicating that a new message packet is being read. Each message

also ends with a control character called End of Transmission which is represented by the value 0x04.

Sections of the envelope are partitioned by the third and final control character, the pipe character

'I’. Going forward these three characters, the Start of Header, End of Transfer, and Pipe characters

will be referred to as SOH, EOT, and partition respectively.
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Figure 3.10: The protocol for all messages passed within the system.

Encoding Reserved Characters

Inherently when dealing with reserved characters, one must be assured that they will never be used
outside of the score of within message envelopes. This is not possible, unfortunately, in the case of
the data the we are dealing with because there is no stipulation on what data the MPI program may
print to the screen or send in a buffer. In order to deal with this scenario, some commands, such
as PLAY, RECORD, and REPLAY, include replacement strings for the three reserved characters. These
replacement values will be used to encode literal uses of these reserved characters while they are
being transferred back to The Client who can then decode them. These replacement strings are
configurable by the user and can be of any length greater than 1. The default replacement strings for

SOH, EOT, and partition characters are *SOH#*, *EOT*, and *BAR* respectively.
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Play

The PLAY command is the basic command to start a debugging session and is initiated by pressing
the Play button D found within the tool bar. It indicates to The Call Center that The Runtime
should not do any recording, redirecting or analyzing of the MPI code. The parameters passed along
with the PLAY command are the number of nodes to include, the location of the executable to run,
the host file to use, the parameters for the mpirun command, the SOH, EOT, and partition encoding
strings, and a comma delimited list of nodes to run under GDB. Figure 3.11 details the contents of
a sample PLAY command sent from The Client to The Call Center indicating that 4 nodes should
run the file called addPrimes, with a host file called host.txt and pass the parameters 1 and 99999.
*SOH#*, *BAR*, and *EQT* are the strings to use to encode the reserved characters and nodes 1 & 2

will be run under GDB.

Ox1PLAY |4 | MPI/hin/addPrimes|hosts.txt| 1 999999 | *SOH* | *BAR™ | *EOT* | 1,20x4

Figure 3.11: The protocol for a sample PLAY command.

Record

A RECORD command is initiated by pressing the Record button E in the tool bar. When sent to
The Call Center, it indicates that The Runtime should record each command in the MPI session.
When a RECORD session is run, every node will record the input parameters, buffer contents, and
return values of each MPI command along each step of the program. As with the PLAY command,
the parameters passed within the RECORD command are the number of nodes to include, the location
of the executable to run, the host file to use, the parameters for the mpirun command, the SOH, EOT,
and partition encoding strings, and a comma delimited list of nodes to run under GDB. The RECORD
command also adds two extra parameters which are the location of the Sessions directory to save in
and a name for the session being run.

When The Call Center receives a RECORD command, it creates a time stamp string and passes it,
along with the user defined session name, to The Runtime. Each node then creates a folder within their
Sessions directory named after the session name and timestamp, and stores the results of the session
inside it in a file called Node#.xml where # is the node’s id in the cluster. The complete directory
path to the recorded session for each node is thus Sessions/SessionName/TimeStamp/Node#.xml.
Figure 3.12 details the contents of a sample RECORD command sent from The Client to The Call
Center with the same parameters as the PLAY command example above, along with parameters to

save the details of the session to the MPI/Sessions folder under the session name Homeworkl.
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0x1RECORD |4 | MPI/bin/addPrimes | hosts.txt| 1 999999 | *SOH* | *BAR* | *EOT*| 1,2 |

MPI/Sessions | Homework10x4

Figure 3.12: The protocal for a sample RECORD command.

Replay

A REPLAY command is sent by choosing a replay session from the drop down below the Play button
E in the tool bar as shown in Figure 3.13. When sent to The Call Center it indicates that the user
wants some, or all, nodes to play back values recorded from an early session. All nodes indicated
as replay nodes will return values read from an XML file, rather than executing them to the MPI
runtime. As with the PLAY and RECORD commands, the parameters passed along with the REPLAY
command are the number of nodes to include, the location of the executable to run, the host file to
use, the parameters for the mpirun command, the SOH, EOT, and partition encoding strings, and a
comma delimited list of nodes to run under GDB. The REPLAY command also sends the location of
the Sessions folder, the name of the session to replay, the time stamp of the instance of the session to
replay, and a comma delimited string of nodes to run in REPLAY mode.

The Call Center passes these extra values to each of the nodes in the REPLAY session so that each
node knows if it is to run in REPLAY and if the node that it may be exchanging messages with is
in REPLAY too. For most commands, if the node is running in REPLAY mode, it will just return the
values read from the XML recording of the session to the user. The only case in which a node which
is running in REPLAY mode will actually make an MPI call is if the command is sending messages to,
or receiving messages from, a node which is running in play mode. This is because that node may
be blocked, waiting for a real message to be received by the MPI runtime system. Most messages
however can just be read and returned to the user. REPLAY mode is helpful because it allows the users
to focus on one particular node that he/she may feel is the source of a problem and to follow along
with its XML file while execution is happening to determine what went wrong. Figure 3.14 details
the contents of a sample REPLAY command sent from The Client to The Call Center requesting that
it replay the Homework1 session recorded in Figure 3.12 with nodes 2, 3, and 4 running in REPLAY

mode.

Status Indicators

The tool bar offers a visual status indicator as to what state it is in while it is establishing a connection
and running a debugging session. Table 3.3 provides a quick reference to what the different status

colors indicate.
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Figure 3.13: The Environment Data response integrated into a connected Client.
Ox1REPLAY |4 |MPI/bin/addPrimes | hosts.txt| 1999999 | *SOH* | *BAR* | *EOT*[1,2 |
MPI/Sessions | Homework1 | 2013-3-04T08:55:15| 2,3,40x4

Figure 3.14: The protocol for a sample replay command.

Indicator Status
] | idie
Connecting
Connected
Session Running

Session Complete

O

Error

Table 3.3: The status indicators displayed on The Client.

Attaching GDB

The subject of attaching GDB to each of the nodes from the front end is discussed later in this

chapter, in section 3.4, after describing how the rest of the system is implemented.

3.2 The Call Center

The Call Center is the central information processing application to the entire system. It is responsible
for accepting connections from The Client, responding to requests to begin MPI sessions, retrieving
buffer values, and managing all messages passed back from the MPI runtime in an orderly fashion.
After establishing connections to The Runtime, the job of The Call Center is to reliably relay full

messages from each node, in the order they were executed, back to The Client for the user to inspect.
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3.2.1 Incoming Commands

While The Call Center is running, it can take in seven different requests. Four of these commands
ENVIRONMENT, BUFFER REQUEST, GDB INPUT, and MPI COMPLETE do not initiate an MPT session, but
rather support data in and around the sessions. The other three, PLAY, RECORD, and REPLAY do
initiate an MPI run session and prompt The Call Center to spawn extra threads in order to listen to

TCP connections and messages sent back from The Runtime.

ENVIRONMENT

Upon connecting to The Call Center The Client will issue an ENVIRONMENT request which is meant to
retrieve a special folder location configured at startup where the users will be storing their MPT files.
Accompanying the MPI folder is an XML section representing the header information of all of the
previously recorded sessions. The request consists of the header ENVIRONMENT, along with the path
of the session folder to pull session data from, and the response starts with the header ENVIRONMENT
DATA followed by the requested data. Figures 3.15 and 3.16 show examples of the request and the

corresponding response values from the Environment and Environment Data messages.
0x1ENVIRONMENT | MP1/Sessions0x4

Figure 3.15: The Environment request sent to The Call Center.

Upon receiving the Environment Data response, The Client prefixes the location of the MPI
folder to the user’s execution location, so that the user does not have to type the full path to their
executable. It also parses the various session information header packets in order to allow the user to
choose to replay any session which was previously recorded. Figure 3.13 shows The Client displaying
the prefixed folder, and replay drop down list, which were populated from the result of issuing an

ENVIRONMENT request to The Call Center.

BUFFER REQUEST

The Distributed Application Debugger sends back everything known about each command requested
except for buffer values. This was a conscious decision in order to cut down on the size of the
messages sent back. In the case of messages being exchanged that contain buffers that are hundreds
or even thousands of bytes long, it was decided that it was in the best interest of the user to, firstly,
get the session completed as soon as possible and then, secondly, let the user request individual
buffers that they were interested in. The only stipulation, however, is that the session must have

been in RECORD mode since buffer values are not kept in memory by The Runtime, but are saved to
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Ox1ENVIRONMENT DATA | /home/mjones11/MpiFiles/bin/|

<Sessioninfe>-
<SessionName>Homeworki</SessionName>
<StartTine>2013-05-07720 38 05</StarTime>
cNodes>2¢/Nodes
<HostFile></HostFile> ;
cLocation>/home;mjonesil/MpiFites/bin/TestAdde tocation:
<Paramete rs>933 10000« Paramete m=

</sessioninfo>

=Sessioninfe>

<SessionName>Homeworki</SessionName>
SStarTime>2015-03- 07120 37-03</StarTime>
cNodes>24/Nodes> '
<HuostFile>=<HostFie>
<Location=/home/mjone s11/MpiFdes/bin TestAdds/Location>
<Parameters>499 10000< Parameters>

</Sessieninfo>

<Sessioninfor

i e Sson N>
<StartTime>2013-05-07720 35 50</StartTime
Nodes>2¢/Nodes>

<HostFile></HostFile>
<Locations/hame/micnesii/MpiFies/bin TestAdd</Location
cParametar=>100 99999 Parametes>

</Sessioninfox

<Sessionnfo>
cSessonName>Testings/séssionName>
<StartTime>2013 0212718 38.05</5tartTime »
ZNodes>2</Nodes*
sHostFie> </HostFiie>
cLocation=/home/miones11/MpiFies/bin ftests /Location>
¢Paramatars>i</Parameters>

<fSessioninfo>0xd

Figure 3.16: The Environment Data response.

disk in the case of RECORD. In order to retrieve buffer values, they must first request them by right
clicking on one or more message commands and selecting Get Buffer as displayed in Figure 3.17
When the user selects one or more commands to retrieve buffers for, The Client will issue a
buffer request in the form of BUFFER REQUEST|NodeId|DestinationCommand.SourceCommand, . . .|
FileLocation|SOH string|Partition string|EOT string. The third parameter is a comma de-
limited string of pairs in the form DestinationCommandl.SourceCommandl, DestinationCom-
mand2.SourceCommand2 etc. The Destination Command is the command id that the buffer
has been requested for, but the Source Command is the one which actually contains the buffer
value. In most cases the Destination and Source will be the same, but, in the case of asynchronous
communication, they could be different. For instance in the case that the buffer is requested for an
MPI_IRecv() command, the buffer will not be found in the XML stored for that command since
it was not known at the time that the command was issued. The buffer was not actually known
until an MPI Wait() was issued which will mean inspecting the XML for a different command than

the message command that it belongs to. Figure 3.18 shows the contents of a sample buffer request
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Figure 3.17: The user selecting to retrieve two buffer values.

message issued for two buffers, the second of which has a different destination command id than

source command id.

0x1BUFFER REQUEST|1|37.37,47.48 callCenter/DebuggerFiles/Sessions/Testing/2013-03-
08T20:36:20/Nodel.xml| *SOH* | *BAR* | *EOT*0x4

Figure 3.18: A BUFFER REQUEST command issued to retrieve to buffer values from The Call Center.

Upon receiving the BUFFER REQUEST command,The Call Center parses the message, opens the
file indicated and returns a Buffer Value response for the buffers requested in separate mes-
sages. The Buffer Value command is returned in the form BUFFER VALUE|NodeId|CommandId

|EncodingIndicatorByte|Buffer Valuel|Buffer Value 2|Buffer Value 3..... Becauseit is pos-

sible that the values in a buffer could be one of the three control characters, the buffer values command
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www.manharaa.com



will encode any reserved characters based on the encodings passed in from the buffer request command.
In order to let The Call Center know if any of the buffer values where encoded, an EncodinglIndica-
torBuffer character is included. If any bytes were encoded an 'E’ is returned to encoded data, and if
not, a "U’ is returned to indicate unencoded data. The contents of the two responses to the request

in Figure 3.18 are illustrated in Figure 3.19.

Ox1BUFFERVALUE|1|37]|U|0.000000] -45.123400| 245.333300 | 356.134143| 76.554430 |
68.342213| 6555167.651547 | 56.000000| 586.000000 | 25.0000000x4

0x1BUFFERVALUE| 1|47 |E|*SOH* | *BAR* | *EOT* |$|% || &|*| (]) |- 0x4
Figure 3.19: Two buffer value responses returned from The Call Center.

The Call Center supplies a buffer inspection panel whose icon = becomes enabled within the
tool bar whenever The Client is in RECORD or REPLAY mode. The buffer inspection panel displays the
decoded values of each index of the buffer and, in the case of non-numeric buffers such as MPI_BYTE
or MPI_CHAR, includes a hexadecimal translation column as well. Figure 3.20 and 3.21 show the

two buffer results returned from the buffer request issued in Figure 3.18.

GDB INPUT

When The Client has attached GDB to one or more nodes, the user can issue individual commands
to preform any command supported by GDB. These commands can be issued from The Client by
using the GDB INPUT command. The GDB INPUT request is issued in the form GDB INPUT|NodeId|GDB
Command. Upon receiving the request, The Call Center parses the command and routes it to the
appropriate node. GDB then interprets the command and the result is printed to the console as
in any GDB command. Figure 3.22 shows a sample GDB INPUT command requesting The Call
Center to route the GDB command display to node 1 in order to print the value of a variable called

loopCounter to the screen.

MPI COMPLETE

The last non-session command accepted by The Call Center is the MPT COMPLETE command. This
command is issued by The Client to indicate that it has received and processed an MPI_Finalize()
command for every node in the cluster and that it does not intend to listen for any more commands
from this session. Upon receiving the MPI COMPLETE command, The Call Center releases any memory
allocated to that session, cleans up any MPI nodes still controlled by GDB, and any other cleanup

processes required. It is important to note, however, that The Call Center does not close itself down,
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Figure 3.20: The Client displaying the buffer contents returned from The Call Center.

nor does it close the SSH session it was launched from or the TCP connection it has back to The
Client. This allows for further sessions to be deployed quickly from The Client, without the user
having to incur all of the overhead associated with starting up The Call Center. The envelope for

the MPI COMPLETE command is illustrated in Figure 3.23.

Session Commands

The Call Center accepts the three session requests detailed earlier: PLAY, RECORD and REPLAY. Upon
receiving one of these commands, The Call Center initiates a request to the command line and appends

extra parameters for The Runtime to interpret. As with starting MPI from any other command
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Figure 3.21: The Client displaying the buffer contents returned from The Call Center with Hex
values.

0x1GDB INPUT| 1| display loopCounterox4
Figure 3.22: A gdb input command issued to request a variable value from GDB.
Ox1MPI COMPLETEOx4

Figure 3.23: The MPI Complete command.

line, it is initiated with an mpirun command with the corresponding parameters dictated from the

contents of the PLAY, RECORD and REPLAY requests. The MPI mpirun command line arguments are
displayed in Table 3.4.

34

www.manharaa.com




Command Line
mpirun -np <number of processes> -machinefile <hostFile > <program> <argl arg2 ....>

Arguments
-np <number of processes> | Specification of the number of processors to run.
-machinefile <hostFile> A file of names of possible machines to run.

<program> <argl arg2...> | The MPI program and arguments to run.

Table 3.4: The standard mpirun command line arguments.

PLAY

As described in Figure 3.11, the PLAY request contains the number of nodes, host file name, file
name, file arguments, encoding replacements for the SOH,EQT, and partition characters, and the list
of nodes to be controlled by GDB. The PLAY command then appends the flags and values displayed

in Table 3.5 to the end of the standard mpirun parameters list.

Arguments

-s <SOH, Partition, EOT replace> The values to substitute for the control characters.

-g <GDB Node 1, GDB Node 2 ...> | A command delimited list of nodes to run under GDB.
-f <Full file path> The file path of the executable to be supplied to GDB.
-¢ <Address:Port> The Call Center address and port to connect back to.

Table 3.5: The extra command line arguments appended to mpirun from a PLAY request.

RECORD

As described in Figure 3.12, the RECORD request contains all of the parameters supplied in the PLAY
request along with the location of the session folder to store the results of an MPI session in and the
name of the session to record them in. Like the PLAY command, the RECORD command appends its

values to the end of the standard mpirun parameters list as dictated in the Table 3.6.

Arguments

-s <SOH, Partition, EOT replace> The values to substitute for the control characters.

-g <GDB Node 1, GDB Node 2 ...> | A command delimited list of nodes to run under GDB.
-f <Full file path> The file path of the executable to be supplied to GDB.
-¢ <Address:Port> The Call Center address and port to connect back to.
-r Indicator for RECORD mode.

-d <Folder Path> The directory to store XML recordings to.

Table 3.6: The extra command line arguments appended to mpirun from a RECORD request.
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REPLAY

As described in Figure 3.14, the REPLAY request contains all of the parameters supplied in the RECORD
request along with the time stamp of the specific session to replay and the comma delimited list of
nodes to replay. Like the PLAY and RECORD commands, the REPLAY command appends its values to

the end of the standard mpirun parameter list as detailed in Table 3.7.

Arguments

-s <SOH, Partition, EOT replace> The values to substitute for the control characters.

-g <GDB Node 1, GDB Node 2 ...> | A command delimited list of nodes to run under GDB.
-f <Full file path> The file path of the executable to be supplied to GDB.
-¢ <Address:Port> The Call Center address and port to connect back to.
-p <Replay Nodes> The comma delimited list of nodes to replay.

-d <Folder Path> The directory to read XML recordings from.

Table 3.7: The extra command line arguments appended to mpirun from a REPLAY request.

3.2.2 Message Routing

Once The Call Center has started an MPI session, it will begin to receive one call back connection per
MPT node as described in Section 3.3.2. Once all of these connections are made the system becomes
fully connected, as illustrated in Figure 3.24, with The Call Center managing multiple incoming
connections from the MPI runtime and only one outgoing connection back to The Client. In order
to efficiently route messages from multiple sources back to The Client, The Call Center employs a
multi-threaded model to multiplex between reading from the incoming nodes, queuing the messages
read, transferring them to the output queue, and then writing them back to The Client. This system
of message routing is illustrated in Figure 3.25 and described further in this section.

Upon receiving the initial incoming connection from The Client, The Call Center creates one
outgoing message thread which blocks while waiting on a semaphore known as the outgoingQueueNo-
tification. When this semaphore is released, due to a thread posting to it, the outgoing message
thread attempts to acquire the outgoingQueueLock which ensures that it can pop messages off of
the outgoing queue, (see Appendix A.2), and write back to The Client in a thread safe manner.
The outgoing message queue is populated from the messages passed in from the MPI nodes. After
launching the MPI runtime due to receiving a PLAY, RECORD, or REPLAY request, The Call Center
receives connections back from the MPI nodes. When The Call Center detects a call back connection
from an MPI node, it creates a clusterNode structure (see Appendix A.4) which stores the connected
socket to read from and a local message queue to write to. It then launches two threads, one Reading

and one Processing, which work in tandem to read from an MPI node and move the messages read to
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The Client ] : \ The Bridge(s) |} The Call Center The Runtime.

Figure 3.24: The system connected fully connected from The Client to the MPI nodes via The Call
Center.

the outgoing message queue. It is important to note that while each MPI node has a local message
queue and a set of Reading and Processing threads, that The Call Center has only one outgoing
queue and one thread writing messages from it back to The Client.

The Reading thread’s purpose is to read in messages from an MPI node and populate a local
message queue without worrying about pushing these messages to The Client. It creates a charList
structure (see Appendix A.1) dedicated to the MPI node it is reading from. Whenever something is
read from the node, the data is appended to the charList. The reading thread then examines the
list to see if there were any full messages written by detecting SOH and EQT characters and, upon
detecting a full message, acquires the clusterNodeLock semaphore, transfers that portion of the
charList to the node’s messages queue, and alerts the process thread to handle transferring those
messages to the output queue by posting to the messageNotification semaphore.

The Processing thread’s purpose is to move these messages to the outgoing queue when no other
thread is adding or removing from it. It blocks by waiting on the messageNotification semaphore
and, upon acquiring it by being notified by the Reading thread, acquires the outgoing thread’s
outgoingQueueLock semaphore. Upon acquiring the outgoingQueueLock semaphore, the processing
thread then acquires the clusterNodeLock semaphore to stop any new messages read from the MPI
node from being placed on the queue. It then transfers all messages from the node’s queue to
the outgoing queue, notifies the outgoing thread that messages are waiting for it by posting to
the outgoingQueueNotification semaphore, releases the clusterNodeLock and outgoingQueueLock
queue semaphores, and waits on the messageNotification semaphore again. The outgoing thread, as

stated earlier, will detect the outgoingQueueNotification semaphore, acquire the outgoingQueueLock
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Figure 3.25: Two threads per MPI node populating one outgoing message queue.
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sempahore, and safely write all queued messages back to The Client.

3.3 The Runtime

The Runtime is the final part of the system which links the user’s MPI code to the remote debugging
Client. The Runtime runs below the user’s MPI code which is being debugged, and provides a level
of indirection which handles recording, replaying, and sending data back to The Call Center which
will relay them back to The Client. The key to the user passing control of their MPI code that they
want to be debugged is in the header file that they import.

3.3.1 Importing mpi.h

Appendix B.3 details the 4 step set of instructions on how to integrate The Runtime into a user’s
code. Step 3 indicates that, in order to allow The Runtime to reflect on the user’s code, the user
needs to replace the inclusion of the MPI framework’s mpi.h header file, show in Figures 3.26, with
The Runtime’s mpi.h header file shown in Figure 3.27. This one step completely transforms the
user’s code at compile time, without them having to know, and redirects their MPI library calls to

The Runtime which can then provide debugging support.

#include <mpi.h> #include “mpi.h”
Figure 3.26: Including the standard Figure 3.27: Including the debug-
MPI framework. ging MPI framework.

The contents of The Runtime’s mpi .h file, which is displayed in Figure 3.28, becomes included in
the user’s code. On line 1 of the mpi.h header file is an include statement for the MPI framework’s
real mpi.h file, which ensures that calls to the MPI library can made. After this is a conditional
statement depending upon if the MPIDEBUG flag has been compiled as described in the last step in
Appendix B.3. When the MPIDEBUG flag has been set because The Runtime libraries have been
compiled and included, the file now imports two other header files: debug.h, shown on line 4 of
Figure 3.28, and mpidebug.h as shown on line 5. After that the user is set to begin debugging with
The Runtime because the contents of debug.h, shown in Figure 3.29, and mpidebug.h, included in
Appendix B.1, contain the necessary source code to redirect the user’s source code to The Runtime’s
assemblies.

The debug.h file only contains macros as shown in Figure 3.29. What these effectively do is
replace any calls to the MPI library methods, with new ones which are prefixed with an underscore.

An example program which gets its MPI calls replaced at compile time is displayed in Figure 3.30. In

39

www.manaraa.com



#include <mpi.h>

#ifdef MPIDEBUG
#include ”debug.h”
#include ”mpidebug.h”
#endif

S T W N~

Figure 3.28: The contents of the mpi.h file included with The Runtime.

#ifndef DEBUG.

#define DEBUG._

#define MPI_Init (A,B) _MPI_Init(__FILE__, __LINE__ A B)

#define MPI_Finalize () _MPI_Finalize (__FILE__, _LINE__)

#define MPI_Comm rank (A,B) _MPI_Comm_rank( __FILE__, __LINE__ A B)

#define MPI_Comm size(A,B) _MPI_Comm size(__FILE__, _LINE__,A B)

#define MPI_Send(A,B,C,D,E,F) _MPI_Send(__FILE__, __LINE__ ,A,B,C,D,E,
F)

#define MPI_Recv(A,B,C,D,E,F,G) _MPIRecv(__FILE__,_ _LINE__ A B,C,D,E,
F,G)

#define MPI_Isend (A,B,C,D,E,F,G) _MPI_ISend(__FILE__, LINE__,A,B,C,D,E
F.C)

#define MPI_Irecv(A,B,C,D,E,F,G) _MPI_.IRecv(-_.FILE__,__LINE__ A /B,C,D,E
F.C)

#define MPI Wait(A,B) _MPI_Wait(__FILE__, __LINE__,A,B)

#define MPI_Barrier (A) _MPI_Barrier (__FILE__, _LINE__,A)

#define MPI_Probe(A,B,C,D) _MPI_Probe(__FILE__, __LINE__ ,A,B,C,D)

#define MPI_Iprobe(A,B,C,D,E) _MPI_IProbe(-_FILE__, __LINE__ A ,B,C,D,
E)

#endif

Figure 3.29: The contents of the debug.h file included with The Runtime.

this figure MPI_Init() has been replaced with _MPI_Init() at compile time, MPI_Barrier() has been
replaced with _MPI_Barrier(), MPI_Send() has been replaced with _MPI_Send(), and so on because
of the macros in debug.h. In this scenario all calls to the underscore versions of these methods,
which are contained in mpidebug.h from line 6 of Figure 3.28 and implemented by The Runtime,
provide The Runtime a chance to connect back to The Call Center up MPI_Init() being called, as
detailed in Section 3.3.2, and then send back debugging information for The Client, as detailed in
Section 3.3.3.

3.3.2 Connecting to The Call Center

When each node joins the MPI system by initiating an MPI_Init() command, a series of runtime

initialization steps happen. First, The Runtime version of MPI Init() issues a real MPI_Init()
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#include "mpi.h"

int main{int argc, char *argv[]){
MPI_TInit(fargc,&argv);
MPI_Comm_siza{MPI_COMM WORLD,EnumProcs);
MPI_Comm_rank (MPT_COMM WORLD, BmyId);

H(myId = @)
//This is the master node.
//5end the whols buffer ta the middlz index
MPI_Send(transferBuffer, numSlaves, MPL INT,
startinglodeId, numSlaves, MPI_COMM WORLD);

//Sync and then distribute the imtial values
MPI_Barrier(MPI_COMM_WORLD);

//Wait for the resuylt
MPI_Recv(&FinalResult,1, MPI_INT,
numSlaves, TAG, MPI_COMM WORLD, &stat);

//5end result-and wait for everyone to get it
MPI_Send(&FinalResult, 1, MPI_INT,
startinghodeld, TAG, MPI_COMM WORLD);

MPI_Barrier(MPT_COMM WORLD);

}

elsaf
//Bistribute and process ithe paritial sums
DistributeInitialvalues();
ProcessPartialSums{});

if(myId == numslavas){
/f/Send the result back to the master
MPI_Send(&partiaiSum, 1,
MPI_INT, @, TAG, MPI_COMM WORLD);
}

3

MPI_fFinalize();
return 8;

}

#include <mpi.h»
#include “debug.h"
#include “mpidebug.h”

int main(int argc, char “argv[]){
_WPI_Init{&argc,Rargv);
_MPI_Comm_size(MPI_COMM_WORLD, &numProcs);
“MPT_Comm_rank (MPI_COMY_WORLD, BmyTd);

if{myId = 8){
ffThis 1s the master node.
ff5end the whole buffer to the middle index
_MPI Send(transferBuffer, numSlaves, MPI_INT,
startinpgiodeId, numSlaves, MPI_COMM_WORLD);

f7Sync and then distribute the imtial values
_MPI Barrier(MPI_COMM WORLD):

> //Wait for the result

_MPI_Recv(&finalResult,1, MPI_INT,
numslaves, TAG, MPI_COMM_WORLD, &stat);

f/5end result and wait for averyope to get it
_WPL Send(&FinalResult, 1, WPE INT,
startinghodeld, TAG, MPI COMM_WORLD);

_MPI_Barrier(MPI_COMM_WORLD);

}

elsef
//Distribute and process the partial sums
DistributeInitialValues{);
ProcessPartialSums();

If{myTId == numSlaves){
//5end the result back to the master
_MPI_Send(&partialsum, 1,
MPI_INT, 8, TAG, MPL_COMM WORLD);
E

}

_MPI_Finalize();
return @;

X

Figure 3.30: Compile time changes made from including The Runtime’s mpi.h file.

command to join the MPI group that will run. It also issues an MPI_Comm_size() and an MPI_-
Comm_rank() command so that when it parses the input commands it can determine which nodes,
including itself, are —-p nodes, in the case of a REPLAY session, and store each node’s role in a lookup
table.

Once The Runtime knows what the size of the cluster is and what its rank is, it then parses the
extra command line parameters passed in from The Call Center. It assumes that the entire system
will run in regular play mode, but if a -r is detected it notes that it is running in RECORD mode,
and if a -p is detected it notes that it is running in REPLAY mode and determines which nodes in
the cluster are replay nodes and which are normal. It also stores the data passed from -d for the

directory path, -f for the executable file location, -s for the SOH, EOT, and partition control character
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replacement strings, -g to determine if it is supposed to let GDB attach, and -c for the address of
The Call Center and the port that it is listening for connections on.

After parsing the input strings, the system redirects stdout to a different file descriptor and
spawns off a thread dedicated to listening to this file descriptor as detailed in Appendix B.2. Finally
the system makes a TCP connection back to The Call Center, passes its first message back which
contains its node id, its process id, and computer name, and then waits for The Call Center to
acknowledge that all of the nodes have connected back to The Call Center by reading a Continue
command. Once all of the nodes have connected back to The Call Center and The Call Center
acknowledges it is ready to start the session by writing Continue on each of there ports, the system

is fully connected as shown in Figure 3.24.

3.3.3 MPI Session

Once The Runtime has connected to The Call Center during the MPI_Init() command, the system
follows a four step pattern of executing the users code, providing status information back to the user,
and recording and validating when appropriate. Figure 3.31 illustrates the 4 steps within a sample

command, _MPI_Send(), and the other 11 commands follow the exact same pattern.

Step 1

The first thing that each command does is to create an ’expectedValues” XML node which will be read

from an XML file, in the case that the node is running in REPLAY mode, or remain null otherwise.

Step 2

The second step is to write a PRE message, detailed in section 3.3.4 and illustrated in Figure 3.34,
back to The Client to let it know what parameters are about to be executed on the next MPI
command. In the case that the expectedValues XML was actually populated because the node is
running in REPLAY mode, the method creating the PRE message will also validate that the parameter
values passed in where the same as those read in from the XML file. In the case that parameters
read in where different than the expected ones read from the XML file, the system will append those
expected values to the end of the PRE message to, as detailed in red within Table 3.8, to let The
Client warn the user that the session being played back is producing different values than the original

instance.

Step 3

After the PRFE message has been sent back to The Client, the system handles executing the actual

MPI command based on the role that the node is running in. In normal PLAY mode, the system
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always executes the real MPI command. In the case of RECORD, the system executes the real MPI
command and then logs the XML representation of the command to file using the XML library
I wrote and included in Appendix A.5. In the case that the node is running under REPLAY mode
the results will vary based on the message. If the message is a send or a receive message and the
source or destination is running in normal PLAY mode, the REPLAY node will actually execute the
MPI command. When the code snippet below for the _.MPI_Send() command is running in REPLAY
mode, for instance, it must see if the node that it is sending to is running in normal PLAY mode first.
If it is, then it must send the message because the destination node would be blocked waiting for the
message to arrive. If the destination is, instead, running in REPLAY mode too, than there is no reason
to send the message. Regardless whether if the node’s mode requires that it actually executes the
statement or not, the MPI command’s return value is saved from the result of sending it or reading

it from the replay XML in this step.

Step 4

Finally, the command sends a POST message, detailed in section 3.3.4 and illustrated in Figure 3.35,
back to The Client to let it know that the command actually completed and to obtain the parameter
values that may have changed because of it along with the command’s return value. Table 3.9 shows

the values returned, along with which parameters are validated and flagged when incorrect in red.

3.3.4 Runtime Commands

F The Runtime posts five different commands to provide debugging status to The Client. Each is sent
back to The Call Center without consideration of the other nodes who are also sending back data
and do not invoke responses. It is the responsibility of The Call Center to keep the message packets
received from being corrupted as detailed in Section 3.2.2. This section details the five messages sent

back to The Call Center from The Runtime.

NODE ID

The first command, NODE ID has already been touched on briefly. It is sent back to The Call Center
immediately after The Runtime establishes a connection to give the the details of the MPI node’s
process id and the name of the computer it is running on. In the example illustrated in Figure 3.32,
an MPI node reports that its rank is 1, its process id is 21809, and it is running on the machine
cortex.cs.unlv.edu.

Unlike other commands sent back from the MPI nodes, The Call Center inspects this message

first and makes a record of each node’s details before passing this command back to The Client.
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[/PPT Send implementation
it _MPT Send(char pnsme[1881, inmt line, void *buf, int count,
MPI_Datatype dztatype, int dest, imt tag, WPI_Comm comm) {
int commandld = &
imt returnialos = 2;

J/Ger the next nodle 17 this ds a plsbEsck =itustion

RiMode *expectedifalues = HULLy

iF( role = PLAYBACK NOUE) ;
sipectedValues = gethextiode();

f/5end a "FRE" wessage Ehat we: are procassing this command
4F{ CammunicztionConfigured() == TAUE)
wit:Taﬂie:rk(nrﬁerﬂ:&uzﬂ*%FEmdLﬁnk J:bn:J court,
dabt};re, dést, ‘tag. comm, BEommandId, 2xpectedValues));

switchl_role)
£

€as= NORMAL NODE::
f17ust serd ‘as pormal if the mode is nomal
Eﬂtum“m PPI Séﬂﬂ[bﬂf, count, dataty‘pl‘-.‘, dﬂt‘.’, tag, Qﬂm}g
reak;

‘case RECORO. NODE:
t
//5=ng the mesimzs &L rommal and serialdze d4F fo L
returnValis = MPI_Send(buf, count, datatyps, dest, teg; comm);
XMilode: *xmlbnde = snlMPISend(Lrank, buf, count; dotstype, dest, tag, comm,
retupnValue, commandId);

Hlmmllrite the WML mds o Fliz
16gAndDicpase{xmilods);
I
break;
cane PLATEH[KAHDDE:

1:F(_3:lay"bﬁﬁk Fhlal.istfdes‘t] - NORMAL NODE)
returnvalue = HPE Send(bu?, cadnt, satatype, dest, tas, comm);
eles
petunmValue = abs:-:-{xmlﬁetTtrt{ i
xmiG=tohildiode (eipectadValies, RETURN VALUE ELEMENT)));

bresk;
i

1/53nd & "POST' meszaks with = sctual retudn vkius
iF (CommunicationCanfisured() = TRUE)
ur;tefumanttuosﬁeriammsend{ rank, datatype, count, buF,  commandld,
returnValue, expectecvalues, _sohReplace, _paptitionReplace, —eotReplace))s

return Feturniaiue;

Figure 3.31: The four step pattern applied to The Runtime versions of MPI commands.

Ox1NODEID|1)21809]cortex.cs.unlv.edu0x4

Figure 3.32: A Node Id command reporting a node’s process id and computer name.

When The Client receives a Node Id, it displays the details of each node’s data at the top of their

node panel as illustrated in in Figure 3.33.
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Mode 11 ;
3 Host- cotex csunly edu Process id: 21809

Figure 3.33: The details of a node displayed in the header of its node panel.

PRE

The PRE command is meant to let The Client know that an MPI command is going to be executed,
which is the second step of the MPI Session pattern identified in Figure 3.31 and discussed in
section 3.3.3, and serves two purposes. First, it lets the person debugging their application know
the line number, command name and command input parameters of the MPI command about to be
executed. This information can help quickly identify what command a program may be blocking on
in the case of a program that never completes or crashes. The second purpose it serves is to send
back invalid data in the case of a REPLAY node. In this case the actual values parameter will be sent
first and the expected values parameter, which is read from the XML file, is sent at the end when
discrepancies from the actual values are found. The common structure of this command is displayed

in Figure 3.34, as well as a break down of the command specific details displayed in Table 3.8.

0x1PRE|Nodeld|Command Id| Line Number| Command Name | Actual Values| Expected ValuesOx4

Figure 3.34: The structure of the PRE command.

Details returned per command

Command | Variable length details, delimited by ’|” character.

Init

Rank Comm

Size Comm

Send Count Type | Dest Tag | Comm | Count | Type | Dest | Tag
Recv Count Type | Src Tag | Comm | Count | type | Src | Tag
Isend Count Type | Dest Tag | Comm | Req Count | Type | Dest | Tag
Irecv Count Type | Src Tag | Comm | Req Count | Type | Src | Tag
Probe Src Tag | Comm | Src | Tag

IProbe Src Tag Comm | Src | Tag

Wait Request

Barrier Comm

Finalize

Table 3.8: The Actual Values sent back within PRE commands, with detected discrepancy fields
highlighted in red.
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POST

The POST command confirms to the user that an MPI Command has finished which is the last step
of the MPI Session pattern identified in Figure 3.31 and discussed in section 3.3.3. Like the PRFE
command, it serves two purposes of giving details of the results of executing the command such as the
return value, and, in the case of a REPLAY node, includes expected values in case they did not match
the actual values. The command id included in the POST command will always match up with a
PRE command sent earlier. The two commands paint the complete picture of the values passed into
the command and the results after they have completed. The common structure of this command is

displayed in Figure 3.35, as well as a break down of the command specific details displayed in Table 3.9.

0x1POST|Node Id| Command Id| Return Value | Expected Return|Actual Values| Expected ValuesOx4

Figure 3.35: The structure of the POST command.

Details returned post command

Command Variable length details, delimited by ’|” character.
MPI_Init() Return Value | Rank

MPI_Rank() Return Value | Size

MPI_Size() Return Value

MPI_Send() Return Value

MPI_Recv() Return Value | Status | Status | Buf |

MPI . Isend() Return Value

MPT Irecv() Return Value

MPI_Probe() Return Value | Status | Status
MPI IProbe() | Return Value | Flag Status
MPI_Wait() Return Value | Status | Status | Buf
MPI Barrier() | Return Value
MPI_ Finalize() | Return Value

—~

Table 3.9: The Return Values sent back within POST commands, with detected discrepancy fields
highlighted in red.

CONSOLE

Whenever The Runtime detects that something has been printed to stdout, it will send a Console
message back to The Call Center. Like all messages, The Call Center will relay this back to The
Client who will append it to the console window of the corresponding node’s panel. The message
format starts out with the message header Console, followed by the node id, and then, just like in

The Call Center’s Buffer Value command, it has an EncodingIndictor character that indicates if any
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part of the final section, the actual printed message, was encoded because of the detection of reserved
characters. Figures 3.36 and 3.37 display two Console message examples. Figure 3.38 represents the

phrase "Hello World’ being printed to the screen and Figure 3.39 indicates "Hello|World'.

0x1CONSOLE| 1| U | Hello Worldox4

Figure 3.36: An example CONSOLE message that does not have any encoded characters.

0x1CONSOLE | 1|E|Hello*BAR*World0x4

Figure 3.37: An example CONSOLE message that contains encoded characters.

Node | ) B Nade 1 ) . )

5. Consele | £57 Messages [ 2 MPI| 5. Console | £ Messopess | 1 MPE|
DEEES CEEES

Hefio Werld » FHellaiand -

Figure 3.38: Unencoded message Figure 3.39: Encoded message
printed to console. printed to console.
GDB

The last command sent back from The Runtime is the GDB command. Like the CONSOLE command,
the GDB command is meant to relay data, that is printed to stdout, back to The Client to display
while having GDB attached. The Runtime listens to the stdout of the process running GDB and
reports back every character GDB has written to the console. By way of the GDB command, the
Distributed Application Debugger is able to route just the data written to stdout from GDB to
a dedicated window for the user to focus on. The format of the GDB command is displayed in

Figure 3.40 and the data printed to The Call Center in Figure 3.41.
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0x1GDB|1|U |Reading symbols from /home/mjones11/MpiFiles/bin/TestAdd...0x4

Figure 3.40: A GDB command issued to tell some partial text of what has been written to screen.

hoda 1 - ;
@ " Hostocortex csamlv.edu Process Id: 17336

Figure 3.41: The content of the GDB routed to the GDB console display.

3.4 Integrating GDB

Perhaps the most useful and powerful feature of the Distributed Application Debugger is the
integration of the GNU Debugger known widely as GDB. GDB is able to read the debugging symbols
produced by the gee [GCC13] compiler which is the same one used to compile MPI code. GDB can
be used to launch applications or attach to already running applications. Once attached, the user
has commands available at their disposal to break, step over, step into, and continue through lines of
their program as they see their code’s execution path. They can view variable values, recall stack
traces, examine memory and perform a whole host of operations to help them figure out what is

causing a problem in their software.

3.4.1 Attaching GDB

To use the GDB feature of the system, all the user has to do is click the gray debugger icon, on

the bottom of any node that they wish to attach the GDB debugger to. Once pushed, the icon turns

yellow, the debugging panel slides up and the panel’s console panel defaults to the GDB view as
displayed in Figure 3.42.

As described earlier, when the user initializes an MPT session through a PLAY, RECORD, or REPLAY
command, the list of nodes to run under GDB mode are included within the request. When The Call

Center receives the message, the list of nodes running under GDB get passed along to The Runtime,
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DEEES mxE
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Figure 3.42: The Distributed Application Debugger with two nodes selected for GDB.

and the nodes start making connections back. After each node has connected back and The Call
Center has issued a Continue statement over the TCP connection, it now becomes the responsibility
of each of the nodes to determine if they are supposed to be running under GDB or not.

The nodes that will run under GDB go through a five step process in order to let GDB take over
control of their process as shown in Figure 3.43. First, the node forks a second process. The parent
process starts listening to the socket that was established at startup from The Call Center for a
GO command that indicates that the GDB process has been completed. Secondly, the child creates
two unidirectional pipes, named fromParent and fromChild and forks again. Next, the child process
from this latest fork routes stdin to read from the reading side of the fromParent pipe and routes
stdout and stderr to the writing side of the fromChild pipe. After that, the process launches GDB
by issuing an erecvp commnd which leaves the process as just GDB waiting for the name of the
process to attach to.

The last step of the process is done by the parent process from the first fork. This process
effectively becomes a bridge between the MPI process which is blocked from listening to The Call
Center and the GDB process listening to stdin by way of the output side of the fromParent pipe.
This bridging process makes a TCP connection of its own back to The Call Center who knows that
this must be a GDB node since all of the initial callback connections have been made. After a
connection has been established back to The Call Center, the bridging process creates two threads,

one writing whatever it reads from the new Call Center connection to the GDB process, and one
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I

1

Figure 3.43: Forked processes make attaching GDB to the MPI node possible.

that writes whatever it from the GDB process to back to The Call Center. After this, the bridging
process sends a message to The Call Center stating that it has completed setup and blocks for the
rest of the session.

In the final step of the process, The Call Center writes attach [pid], where [pid] is the process of
the MPI node, to the bridging node. When the bridging node writes this to the pipe which it shares
with GDB, GDB sees this command on its stdin line, and attaches to the MPI node completing the
circle. The Call Center also writes the command GO to the TCP connection that it shares with the
MPI Node which allows it to proceed from blocking on a receive. After this the setup is complete;
The Call Center has two TCP connections to the node, one being to the real process and one being

to GDB which has attached to the process.

3.4.2 Controlling GDB

Once all of the GDB nodes have called back and attached, the user now has full control over their
process. The GDB control panel allows the user to issue commands both through a command line

and through hotkeys as displayed in Figure 3.44.
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Figure 3.44: The control panel for a node with GDB attached.

All commands issued from the control panel will be formatted into a GDB INPUT command as
documented in section 3.2.1. When The Call Center receives one of these commands, it parses out
the destination node and writes whatever is written in the message section to the TCP connection
that it has with the bridging process. This process writes the message to the stdin of GDB and
thus it gets applied to the MPI Node. GDB will then write its result to stdout which will get picked
up by the bridging process, who will then write it back along the TCP port back to The Call Center
who will send a GDB command back to The Client as described in 3.4.1.
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Chapter 4

Analyzing Data

The Client is designed to not only process the tremendous number of messages that come into it from
The Runtime, but to also organize them in a way that helps the user quickly debug their program.
On top of launching bridges and a Call Center capable of connecting the user to a cluster hosted
remotely, coordinating PLAY, RECORD and REPLAY sessions, recalling MPI buffers and attaching GDB
to MPI programs, the user has many options to organize the data within The Client workspace to

help them focus on finding what the problem in their program really is.

Command Details

The MPI tab, displayed in Figure 3.9, displays the names and line number of all of the commands
executed by a node during the MPI session. Because there is a lot more information about a message
than just its name and line number that might be useful to a user, each MPI tab displays a Command
Detail section in it. The Command Details section displays the command specific details of the
command highlighted in the tray of the tab. This is a useful area to see the parameters and return
value of a command in question and, by just keying down, the user can step through every command
executed in progression with the knowledge of what got passed into all of them. The Messages tab,
which shows the subset of commands which are just incoming or outgoing messages, also provides
the Command Details section as well. Figure 4.1 shows The Client displaying the parameters and

return value of an MPI_Send() command using the Command Details panel.
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Node 2
3 Host: cortex cs unly edu Process Id: 22381
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Count; 30 Commands (12) = &F
d Command Lne  Slatus  +
15 | wPLAECY 2 | & |
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=

Figure 4.1: The extra information displayed in the Command Details panel of each node.

Matching Messages

Under the MPI tab, the user can see that every command is given a unique command id within each
node. This identifier is issued by The Runtime and sent back within PRE and POST commands to
give The Client a key to use when requesting The Call Center to retrieve buffer values from recorded
sessions. Although The Client does not issue ids per command, it does issue ids per matched message
pair. These matched ids are the ones displayed on the Messages tab. They are global ids across all
nodes and are meant to uniquely link two messages together as a send/receive pair. Although a user

can start with a given message command and search through each node for a corresponding message
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match, the Distributed Application Debugger has a message matching feature which makes this much
easer. When the user enables message matching mode by clicking the Handshake ** icon, the user
can step through each node’s messages and see their complimenting receive or send get highlighted
as displayed in Figure 4.2. This becomes helpful as the users see the parameters and buffers passed
between all the nodes in the cluster which can help them determine if they made a bad assumption,

had an unexpected result, or just made a mistake when passing messages between nodes.

ModeO =~ — = Node 7~ = —
3 Host: cortex.csaumlv.edu Process [d: 27585 @ Host: cortex csunivedu Process Id: 27586
£5 Messages ol MEL |Ew “d Messages | ,-H,Pl-|
Count: 4§ Commands (4 ~ &2| ¢ 2 |||| Count: 48 Commands (4] ~ 43 ¥ &
[T Se Dot Tag ||| [[2_ s e St Dew Tam -
0| 12| MPI_ISEND 1 10 41| 10 MPI_SEND 2 10
15| 12, WPLIRECY i ] 42| 10| MPLRECY 0 !
52| 18| MPLISEND 1 10 43| 10| MPLSEND 2 1
16| 10| MPLRECY | 2 1] 44| 10| MPLRECV | 0 10
54| 18 MPLISEND. 1] 18 45| 10| MPLSEND 2l 10
17| 18| WPLIRECY £ ] 46 10| MPLRECY 0 L
56| 18| MPLISEND 1| 10 47| 12| MPIISEND 2| 1|
18| | MPLRECY | 2 10 48| 12| mPLRECY | 0 n
58| 16| WPLISEND 1| 10 48| 12 WPLISEND z| 1
18| 16| MPLIRECY 2 | Wi 50 12| MPLIRECY 0 gL
BE| 18| MPLISEND 1 10 51| 10 MPIISEND 2| 1ol
20| 10| MPLIRECY. | 2 T 52| 10! MPLIRECY | 0O 10
£ 12| MPLISEND 1] o) 53| 10| WPLISEND z 10
21| w2 welmemy | 20 | W 54| 0] MPLRECY | @ i
B4| 18| MPLISEND 1| 10 55| 100 MPIISEND 21
23| 10| MPLIRECY. | 2 T 56 10! MPLIRECY | 0O 10
| 18] MPLISEND 1| 16 57| 10| MWPIISEND z 10
24| 16| MPILIRECY i i 58| 10| MPLIRECY 0 ial_
{5l Command Details | (5} Command Details |
& =

Figure 4.2: Two nodes displaying automated message matching.
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Although it is helpful to be able to quickly recall and display which messages are matched as pairs, it
is perhaps even more important to quickly be able to display messages which were NOT matched.
An application which has unmatched messages could produce the expected outcome at times, but it
is very possible that it points to a poorly engineered application which contains race conditions which
may not be visible today, but may become visible sometime in the future. Regardless of whether the
user suspects that their application has a bug or not, the Distributed Application Debugger will always

point out mismatched messages to the user by changing the font color to red as displayed in Figure 4.3.

Nede 2
Commands 4] ~ ¢ 5 &
g2 Sz Type Sto Dest Tag |
3| 10| wPLSEND | o 10
10| 12| MPI_SEND ol 10
SR =5
22| 10| WPI_SEND o| 10f
| MPLAEY 1 1
1| 10 MPI_SEND g 10
41| 10| MpLRECY | 1 10 =
12| 10| WPISEND o| 10
43| 10| MPIRECY 1 “18
13| 10| MPISEND e 10 |
% 1w wPuREY | 1] |18
14| 12| MPLISEND o| 10
47| 12 MPILIRELV 1 18
15| 12| MPLISEND a| 10
SR =5
16| 10| MPIISEND o| 10
51| 10 MPILIRELV 1 %
(7 Command Details
™

Figure 4.3: An MPI receive message without a matching send command.
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Filters

The Distributed Application Debugger offers two differnt types of filters to cut down on the over-

whelming amount of data that is present within each tab. The first type has to do with identifying

any of the mismatched messages described above. The messages tab offers a filter button, *r which

removes all matched messages from the node’s messages tab. This leaves the user with just the

suspect mismatched messages for the user to investigate. The second type is aimed at helping the

user cut down on the number of commands displayed within the Messages and MPI tabs. It is a

drop down which allows the users to simple check or uncheck the commands that they want displayed

within the tab as illustrated in Figure 4.4.

gﬂﬂ. Host: cortex.cs unlv.edu Process id- 9002 i %ﬂdﬂ‘l Host- cortex cs.unlv.edu Process Id: 9002
Count: 90 [Commanes 02 -| & | Count: 90
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o MFEI_INIT Uncheck All o MPLINIT 74 (@]
1 MPI_RANK (v | mPLINTT 1 MFI_RANK 1% Qo |
2 MP1_SiZE MPLRANK 2 MPI_SiZE 17 Q |
3 MPI_SEND \v| wpLsIZE A MPI_PROBE 20 © (!
4 MPI_PROBE | MPLSEND | 5 MPI_RECY 2 (7]
5 MPI_RECY \v| mMpLIsEND § | MPLBASRIES 3 ;
B ML BARRIER MPLRECV B MPI_PROBE 20 9
7 MPI_SEND || MPLIRECY g MPI_RECV 7l 9]
a MFI_PROBE (v | mPLwAIT 1 MPI_FROBE 20 [~
a MPI_RECY 'v| mMpLPROBE 12 MPI_RECV 2z o
10 MPI_SEND MPLIPROBE 12 MPI_PROBE 20 Q9
1 MPI_PROBE v | MPILBARRIER 15 MPI_RECV 7l 9]
12 MPI_RECV | mPLANALEZE 17 | WPIL_FROEE 20 [~
i3 MPI_SEND i (%] 12 MFI_RECV 2 o
14 MFI_PROEBE 2 Q 20 MPI_PROBE 20 Q
15 MPI_RECV 2 (%] 21 WFI_RECV. 72 (7]
o MPI_SEND 18 (~] 22 MPI_FROBE 20 (@]
7 MFI_PROBE 20 @ | 24 MFI_RECY 2 @ |.
i1 Command Details ] Command Details

™

B

Figure 4.4: The MPI panel before and after a command filter was applied.
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Command Statuses

The MPI panel displays all commands relayed back to The Client categorized with one of four statuses:
Incomplete, Validation Warning, Error, and Success. Since every MPI command is represented
by one PRE and one POST command, The Client may have messages which have received their
PRE command without its corresponding POST command yet. These in between commands are
categorized with a status of Incomplete. Although all commands start out as Incomplete because
the PRE command is, of course, a separate command from the POST command, it should not
stay Incomplete long. To the user it is unlikely that they will ever see the time between the PRE
and POST command because the POST command, when sent, is always sent closely behind the

corresponding PRE command.

|5 Consele [ 5 Messeges| = MPI |
Count: 13 ‘Commands (12) - e'
] Command Line # Status
o MPI_INT 14 Q
! MPLRANK 15 %)
2 MPI_SIZE 16 Q
3 MF|_RECY u Q
4 MFI_RECY 3 )
5 MPL_RECY % %)
& MFI_RECY En )
7 MFI_RECY U Q
8 MFI_RECV 3 )
s MP_RECY £ )
11 MFI_RECY el Q
1 MPFI_RECY u Q
_-J'-!- "~
o
Originatorld: "
Commandld: 12 =3
Command: MP|_RECV .
B
(Sourt: 1
Datatyps: MPLINT 4
S |
Teg:
(Comm: MPLCOMM_WORLD i

Figure 4.5: An MPI command displayed with a status of Incomplete.
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A command that is noticeably stuck in the Incomplete status gives the user the information that

the line associated in the MPI code was executed but never finished. This implies in most cases

that a command is blocked and execution of the application has effectively halted. Incomplete

messages are indicated in the MPI tab

is not using the Distributed Applicat

with the H icon as displayed in Figure 4.5. While a user who
ion Debugger may be left wondering why the application is

hanging, the users who are will quickly see that the application is blocking on an MPI_Recv() which,

given the list of other successful MPI_Recv() commands preceding it with the same line number,

appears to be in a loop. Upon invest

igating this loop, the user may quickly realize that they are

doing an extra MPI_Recv(), or forgetting a send, and can efficiently fix the bug and move on their way.

" o
(i)

- cortex csuniv_edu  Process Id: 'lm
Mode: . Normal ‘@ Playback

MPI_INIT 14

MP1_RANK 15

MPL_SiZE 15

MPI_SEND

MPI_SEND

MPI_SEND.

MPI_SEND

MPI_SEND

MPI_SEND

MPI_SEND.

MP|_SEND

R B R

GG@-QGG@-QGG@-QE

Figure 4.6: An MPI command displayed with a status of Validation Warning.
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Figure 4.7: An MPI command which returned an error code from The Runtime.

In the case that the user is Replaying a session, The Runtime will be reading values from an
XML file created earlier during a RECORD session. Because parameters are both passed into the
MPI command and recorded in the XML file, The Runtime provides automatic validation of actual
values vs expected values. In the case that a command fails validation and executes a command
with different parameters from before, The Runtime will send back the discrepancies to The Client

and a warning status indicator of ¥ will be displayed. In order to see the specific discrepancy, or
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discrepancies, the user just needs to look at the Command Details section of the command with the
warning and look for data placed between square brackets. This will give an indication of what the
expected values were. In Figure 4.6, The Runtime issued a validation warning that it had recorded a
buffer with a 55 in it, but during REPLAY the buffer had a value of 65.

The final two statuses are error and success. They are based on the return values of each MPI
command which are either zero for success or a non-zero indicating an error. In the case of an error,
the B icon is displayed. In the case of success, the M icon is displayed. Figure 4.7 shows the MPI

tab values with an error reported amongst other successes.
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Chapter 5

Conclusion and Future Work

The Distributed Application Debugger has a lot of great features derived from a two year survey of
graduates students reporting their difficulties in debugging their parallel programs. It works remotely
from home, even when the parallel cluster is not accessible directly. It graphically displays the
nodes of a cluster in a way that represents both the sequential nature of the code being executing
within each process, as well as the parallel nature of the messages being passed between them. It
handles thousands of messages being passed back within any given session to give valuable debugging
data to the user about the MPI commands that are starting and completing and all of the data
being printed to stdout. It offers features for recording and playing back sessions which can help
programmers focus on a problem that may be hard to recreate. It offers buffer value inspection to
aid in debugging common sequential bugs along with message matching to cut down on the timely
message error debugging. Finally it seamlessly integrates GDB to encourage alternatives to inefficient
print statements.

The most complicated part of the Distributed Application Debugger was establishing a Client
that was connected to a Call Center that was connected to a Runtime. Once that was established,
the number of features that could be built into the system were endless because the system has a
reliable TCP communication path and a pattern for request and response pairs contained within the
established message envelope pattern. Although I feel that the Distributed Application Debugger
will save programmers countless hours of debugging their applications, this section is dedicated to

enhancements of the system that I feel could increase its value even more.
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Session History Cleanup

The Distributed Application Debugger’s RECORD feature is very helpful and will likely be used
quite a bit to help students examine MPI sessions and recall buffer values. Because the system stores
a physical folder worth of data for each MPI session, there is a maintenance burden of removing
these directories when they are no longer needed that is not implemented in the application at this
time. The users need to manually remove subdirectories from the Sessions directory in order to clean
up the data from sessions they no longer want to recall. I think that The Call Center could expose a
Cleanup request command which would delete folders of recorded sessions that the user no longer

wants to persist.

Mismatched datatypes

Matching send and receive message pairs between nodes is an invaluable feature that the system
provides for the user. When the system is producing unexpected results and there are sends or
receives that do not complete, the user is instantly clued in to an area that likely is leading to
their results. The problem, of course, is what if all of your messages did match up but you still got
unexpected results. Is there any more data analysis that the system could do to help the user inspect
their code for the error? One such error happens with mismatched datatypes. MPI does not throw
an error if the the datatypes between a send and a receive command are not of the same type. It is
only concerned if they fit in the alloted memory space or not. An example of this situation would be
if a node sent a message with the data type MPI_Int and the receive received it into an unsigned

integer of datatype MPI_Unsigned as displayed in Figure 5.1.

In this example the user has coded for Node 1 to send 3 integers of values -100, 0, and 100 to
Node 0 who will receive them in their input buffer. Since MPI allows this, the application will finish
with the user being none the wiser that he or she accidentally received those values using an unsigned
integer datatype instead of a signed integer. Although if the user looks closely using the buffer recall
feature they will see that the number -100 was sent and the value positive 4,294,967,196 was received,
it is not called out to them immediately. Also, even if they see that the values are different, the
root problem, that the datatypes on the send and receive command were different, is quite subtle. I
think that in the future, a feature which highlighted mixed datatypes between matched by, perhaps,
highlighting the matched messages in a different color or by producing a warnings report would add
value to the product. As the product is now, the user will have to use the values at their disposal

now to track down the root of their problem as displayed in Figures 5.2 and 5.3.
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Figure 5.1: A sample program matching mixed datatypes.
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Figure 5.2: Send buffer type as MPI_INT.

MPI Crashes

An area that the Distributed Application Debugger does not do a very good job dealing with is the
when the MPI framework crashes. This is because The Runtime is included within the application
rather than actually running on top of it. When the user divides by zero, writes to unallocated
memory, runs off the end of a buffer, writes to a file pointer that is closed, or does any other common
mistake that causes crashes, the system is really garnered to be helpless. The Call Center will still
be running, but it will not detect that The Runtime has crashed and report any of this status to the
user. An example of this behavior is displayed in Figure 5.4 in an application similar to Figure 5.1
described in the emphMismatched datatypes subsection. Node 1 once again writes a buffer to Node
0 who does not receive with the same buffer type as the send again, but this time Node 1 sends a
buffer of type MPI_FLOAT and the receive message expects a buffer of type MPI_.CHAR.

In the case of the MPI framework crashing, The Client will keep running and waiting for feedback
from The Runtime and, since it will not hear anything, The Client will also remain running. The
MPI framework does report an error to stderror, however, which would be displayed had the user

run from the command line as displayed in Figure 5.5.
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Figure 5.3: Receive buffer type as MPI_UNSIGNED.

This error clearly indicates that the receiving buffer is too small for the buffer being received,
but, as it works today, the Distributed Application Debugger does not have the ability to convey this
back to the user. I would like to see The Call Center attempt to read from stderror and/or issue a
heartbeat command to The Runtime to test for connection status periodically and, upon detecting

that MPI has crashed, be able to report this back to The Client, cleanup any processes still running,

and reset itself to be able to start a new session.
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Figure 5.4: A sample program with mixed datatypes that will crash MPI.

Integrated Development Environment

I think that the biggest improvement, or next progression would be to evolve the Distributed
Application Debugger into a ’complete solution for both development and debugging’. Integrated
Development Environments (IDE), like Eclipse [Ecl13] or Microsoft Visual Studio [MSN13] have
become very popular with developers as a place that they feel comfortable both developing and
debugging their programs in. In the current system, the user is expected to develop their code as they
would normally do so, and to attach the debugger when they encounter bugs and need more data to

resolve them. Because the system has setup a persistent SSH session all the way to the cluster, I
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e =153

mike@UbuntuMedia: ~ S

Flle Edit View Search Terminal Help
mike@UbuntuMedia:~$ mpirun -np 2 MpiFiles/bin/test
Fatal error in MPI Recv: Message truncated, error stack:
MPI Recv(187) : MPI Recv(buf=0x2541788, count=3, MPI CHAR, s
rc=MPI_ANY SOURCE; tag=MPI ANY TAG, MPI COMM WORLD, status=ox7fffot3bdbfe) faile
d
MPIDI CH3U Recelve data found(129): Message from rank 1 .and tag 11 truncated; 12
bytes received but buffer size is 3
rank @ in job 35 UbuntuMedia 48677 caused collective abort of all ranks
exii status of rank 8: killed by signal 9
mike@Ubuntumedia:~$ |J

Figure 5.5: The output sent to the command line.

would like to see a command line built into the application where users could add, update and delete
file and directory names. I think it would good if it could keep track of project files, even interface
with popular source control software such as Subversion [Sub13] in order to extend its contributions

to the user’s experience even farther.
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Appendix A

Supporting Libraries and
Prototypes

In order to mange the data stored and manipulated within the Distributed Application Debugger,
several data structures had to be created. In order to promote maintainability and reuse, these
structures were encapsulated within there own files and tested individually before incorporating
them into the Distributed Application Debugger. This appendix deals with a number of supporting
libraries and prototypes which contributed to the overall structure of the application and could be

reused and referenced in non-MPI specific code in the future.

A.1 charList

The charList is a data structure which contains a list of characters along with the a count of the size
of the allocated memory and the actual number of characters contained within it. It provides methods
for initializing and disposing the list, manipulating its contents by adding, removing, and replacing
chars, clearing the list completely, as well as populating from a file. Each of the supporting methods
encapsulates dynamically sizing the list so that the user can just concentrate on the characters
within it. The charList souce code is contained within the collections.c file contained in the MpiFiles

directory mentioned in the step by step process to compiling the MPI Runtime in Appendix B.3.
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Listing 1: charList data structure and supporting methods.

typedef struct charList_item{
charx Items;
int ItemCount;
int ListSize;

} charList;

void InitializeCharList (charList* newCharList)

{

newCharList—>ItemCount = 0;

newCharList—>ListSize = STARTING_-CHAR_LIST_SIZE;

newCharList—>Items = (charx)malloc(newCharList—>ListSize x sizeof(char));
memset (newCharList—>Items, '\0', newCharList—>ListSize);

}

void CleanUpCharList (charList* list)

free (list —>Items);
free (list —>Items = '\0');
free (list);
list = '"\0"';
}

void SizeCharList (charList* list , int desiredMinimumSize)

{

int initialListSize = list —>ListSize;

//Handle the case where it is too big
while (list —>ListSize < desiredMinimumSize)

list =—>ListSize = 2 % list —>ListSize;
//Handle the case where it is too small
while (list —>ListSize / 2 > desiredMinimumSize)

list =>ListSize = list —>ListSize / 2;

}

//Check if we changed the list size and, if so, reallocate the memory
if (list —>ListSize != initialListSize)

list =>Items = (charx)realloc(list —>Items, list —>ListSize * sizeof(char));

}

void AddChars(charList* dest, charsx newChars, int count)

{

//first make sure we are big enough to allocate this many bytes
SizeCharList (dest, dest—>ItemCount + count);

//Append the new chars to the end of the list
memcpy (dest —>Items + dest—>ItemCount, newChars, count);

//update the size of our list
dest —>ItemCount += count;

}

void RemoveChars(charx dest, charList* source, int count)

{

//Copy the first 'z' characters from the beginning of the list
if (dest != NULL)
memcpy (dest , source—>Items, count);

//Move the rest of the buffer to the beginning
memmove (source—>Items, source—>Items + count, source—>ListSize — count);

//Free up the buffer if it is less than half full
SizeCharList (source , source—>ItemCount — count);

//Record the new size of the buffer
source —>ItemCount —= count;

}

void ClearChars(charListx source)
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if (source—>ListSize != STARTING.CHAR_LIST_SIZE)

source—>ListSize = STARTING_.CHAR_LIST_SIZE;

source—>Items = (charx)realloc (source—>Items, source—>ListSize * sizeof(char));

memset (source—>Items, '\0', source—>ListSize);
source—>ItemCount = 0;

}

int ReplaceChars(charList* source, charx value, charx replacement)

charList* dest = (charList=)malloc(sizeof(charList));
InitializeCharList (dest);

int startChar = 0;

int sectionLength = 0;

charx startPtr = strstr(source—>Items, value);
int result = FALSE;

while (startPtr != NULL)

{
result = TRUE;
sectionLength = startPtr — (source—>Items + startChar);
AddChars(dest , source—>Items + startChar, sectionLength);
AddChars(dest , replacement, strlen (replacement));
startChar = startChar + sectionLength + strlen (value);
startPtr = strstr(source—>Items + startChar, value);

}

int remainingLeft = source—>Items + source—>ItemCount —
(source—>Items + startChar);

if (remainingLeft > 0)
AddChars(dest , source—>Items + startChar, remainingLeft);

ClearChars (source);
AddChars(source , dest—>Items, dest—>ItemCount);
CleanUpCharList (dest) ;

return result;

}

void ReadChars(charx fileName, charList* resultList)

FILEx fp = fopen(fileName, 71r7);

int bufferLength = 255;

char inBuff[bufferLength];

int length = 0;

while (! feof (fp))
memset (inBuff, '\0', bufferLength);
length = fread (inBuff, sizeof(char), bufferLength — 1, fp);
AddChars(resultList , inBuff, length);

}
fclose (fp);
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A.2 queue

At several points in the application I required a classic queue to manage first-in, first-out behavior
(FIFO). One example of where this was used was during the queuing of messages read in from the
MPI nodes detailed in Section 3.2.2. Listing 2 details my source code for the queue used in within
the application along with the methods which encapsulate initializing and disposing the structure,
enqueing and dequeing nodes and iterating over the contents of the structure. The queue source code
can be found within the same collections.c file mentioned in Appendix A.1 along with the charList

code.

Listing 2: queue data structure and supporting methods.

typedef struct node_item({
void* Value;
struct node_item* NextNode;
} node;

typedef struct queue_item{
nodex FirstNode;
nodex LastNode;
nodex IterateNode;
int Length;
} queue;

void InitializeQueue (queuex newQueue)

{

newQueue—>FirstNode = NULL;
newQueue—>LastNode = NULL;
newQueue—>IterateNode = NULL;
newQueue—>Length = 0;

}
void CleanUpQueue (queue* queueToCleanUp)
while (queueToCleanUp—>FirstNode != NULL)

{
nodex nodeToCleanUp = queueToCleanUp—>FirstNode;
queueToCleanUp—>FirstNode = nodeToCleanUp—>NextNode;

CleanUpNode (nodeToCleanUp) ;

queueToCleanUp—>FirstNode = NULL;
queueToCleanUp—>LastNode = NULL;
queueToCleanUp—>IterateNode = NULL;
free (queueToCleanUp) ;

¥
int IsQueueEmpty (queuex initializedQueue)
if (initializedQueue —>FirstNode == NULL)
return TRUE;
else

return FALSE;
}

void Enqueue(queue* source, void* value)

//Make a new mnode

nodex newNode = (nodex)malloc(sizeof(node));
newNode—>Value = value;

newNode—>NextNode = NULL;

//Point the queue's last node to the new one
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if (source—>LastNode != NULL)
source —>LastNode—>NextNode = newNode;

//Update the last node to the new one

source —>LastNode = newNode;

//Check if this was the first node added

if (source—>FirstNode == NULL)
source—>FirstNode = newNode;

source—>Length+4++;

//No iterating while adding or removing from the queue
source—>IterateNode = NULL;

}

void Dequeue(void#** dest, queuex source)

//Get the first node
nodex nodeToDequeue = source—>FirstNode;

//Get the wvalue from the node
if (dest == NULL)

//dellocate the space of the dequed item, its mnot getting
free (nodeToDequeue—>Value) ;

}

else

x*dest = nodeToDequeue—>Value;

//Point the queue at the mexzt node
source—>FirstNode = nodeToDequeue—>NextNode;

if (source—>FirstNode == NULL)
source —>LastNode = NULL;

//Clean up the dequeued node
CleanUpNode (nodeToDequeue) ;

source —>Length ——;

//No iterating while adding or remowving from the queue
source—>IterateNode = NULL;

}
void StartlterateQueue (queuex source)

source—>IterateNode = source—>FirstNode;

}
void IterateQueue (void** dest, queuex source)
if (source—>IterateNode != NULL)

*dest = source—>IterateNode—>Value;
source—>IterateNode = source—>IterateNode—>NextNode;
}

else

{
xdest = NULL;

}
void CleanUpNode(node* nodeToCleanUp)

nodeToCleanUp—>NextNode = NULL;
free (nodeToCleanUp) ;

}

returned .
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A.3 String Helpers

Along with the charList and queue described in Appendices A.1 and A.2 respectively are other useful
methods contained within the file collections.c. Listing 3 contains the Split and CleanupStringArray
methods used by the Distributed Application Debugger when inspecting and cleaning up the strings
partitioned within the MPI message envelope illustrated in Figure 3.10.

Listing 3: Split and cleanup methods for characters arrays.

//Splits the source on the delimiter passed in and places it in the destination
int Split (charx source, charx delimiter, charxxx dest, int startChar, int endChar)

//determine length of the string to split

int strLen = endChar — startChar;

//Trim the source down first

char* splitStr = (charx)malloc(strLen * sizeof(char));
splitStr = memcpy(splitStr , source + startChar, strLen);

//Initialize a list for the result
int itemCount = 0;

xdest = (charsx)malloc(sizeof(charx));
int sectionStartChar = 0;

int sectionLength = 0;

//Get location of the first delimiter
char* startPtr = strstr(splitStr, delimiter);

//Loop through wuntil we don't find the delimiter anymore

while (startPtr != NULL)

{
//We found one add one to the length of the list
itemCount++;
#*dest = (char*x)realloc (xdest, itemCount % sizeof(charx));

//Get the length of this string and allocate a string to hold the value
sectionLength = startPtr — (splitStr + sectionStartChar);

charx value = NULL;
if (sectionLength > 0)

value = (charx)malloc ((sectionLength + 1) % sizeof(char));
//Copy the section to the result string and add it to the list
value = memcpy(value, splitStr + sectionStartChar, sectionLength);
}
else

//This must be running delimiters, make a null item

value = (charx)malloc(sizeof(char));
value [0] = "\0';
value [sectionLength] = '\0';

(xdest) [itemCount — 1] = value;

//Move the section start forward past the delimiter and look for the next instance
sectionStartChar = sectionStartChar 4 sectionLength + strlen (delimiter);
startPtr = strstr(splitStr 4+ sectionStartChar, delimiter);

}

//Get any remaining characters in the string after the last delimiter
int remainingLeft = splitStr 4+ strLen — (splitStr 4+ sectionStartChar);

//Check if there were an remaining characters
if (remainingLeft > 0)

//Add another space to the list
itemCount++;

73

www.manharaa.com




#*dest = (char*x)realloc (xdest, itemCount % sizeof(charx));

//Allocate a new string for the remaining characters

charx value = (charx)malloc((remainingLeft + 1) * sizeof(char));
if (remainingLeft == 1)
value [0] = "\0';
else
//Add the last part to the list
value = memcpy(value, splitStr + sectionStartChar, remainingLeft);
value [remainingLeft] = '\0';
(xdest) [itemCount — 1] = value;
}
//clean up
free (splitStr);
return itemCount;
¥
void CleanupStringArray (charx** source, int itemCount)
{
int i =0

for (i = 0; i < itemCount; i++4)
(*source) [i] = NULL;

free ((*source) [i]);

*source = NULL;
free (xsource);

A.4 clusterNode

The clusterNode data structure contains data for managing the nodes of The Runtime in a thread
safe way, as described in The Call Center’s Message Routing Section 3.2.2. Listing 4 details the
source code of the structure, found in callCenter.c, which is used to manage communication and
concurrency between The Call Center and a node from the cluster. Also included are the methods

used to initialize and dispose of the structure.

Listing 4: clusterNode data structure and supporting methods.

typedef struct clusterNode_item {
sem_t clusterNodeLock;
sem_t messageNotification;
int nodeld;
int processld;
int clientSocket;
int gdbSocket;
queuex messages;
} clusterNode;

void InitializeClusterNode (clusterNode* newClusterNode, int clientSocket , int nodeld, int
processld)
{

sem_init (&(newClusterNode—>clusterNodeLock), 0,
sem_init (&(newClusterNode—>messageNotification), 0, 0);
newClusterNode—>clientSocket = clientSocket ;
newClusterNode—>nodeld = nodeld;
newClusterNode—>processId = processld;
newClusterNode—>gdbSocket = FALSE;
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newClusterNode—>messages = (queuex)malloc(sizeof(queue));

InitializeQueue (newClusterNode—>messages) ;

void CleanupClusterNode (clusterNodex disposingClusterNode)
{

//clean up the connection created.

close (disposingClusterNode—>clientSocket);

close (disposingClusterNode —>gdbSocket) ;

free (disposingClusterNode —>messages) ;

disposingClusterNode —>messages = NULL;

free (disposingClusterNode) ;

disposingClusterNode = NULL;

A.5 XML Library

Section 2.4 details the high priority features which were considered risky. Within the features
identified as the riskiest was ability to record MPI sessions to file and then be able to replay them
back to the user. In order to save off each of the commands along with their parameters and return
values in a readable and easily parsable format, XML was decided to be used as the protocol for
serializing each of the commands. Listings 5-11 contain the XML library I wrote for formatting,

parsing, and storing the XML needed within the Distributed Application Debugger.

A.5.1 xmlh

In order to use the full XML library included in the XML directory contained within the MpiFiles
directory mentioned in Appendix B.3, a C file needs to include the zmlDoc, zmlReader, and xmlWriter
header files included in Listings 6, 8, and 10. The file ml.h included in Listing 5 was used as a

convenient header file to reference when intending to include the entire XML library.

Listing 5: The common xml.h header file.

#ifndef XML_HINCLUDED
#define XML_HINCLUDED

#include ”xmlDoc.h”
#include ”xmlReader.h”
#include ”xmlWriter.h”

#Hendif
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A.5.2 xmlDoc

The core XML structure code is contained within amlDoc.h and zmlDoc.c. Listing 6 displays the
source code used for the XML and the Attributes structures used to parse the values stored within
XML elements. Listing 7 presents the library of methods created in order to create, parse, and

dispose of the XML structures.

Listing 6: The XML structures stored in the xm1Doc.h file.

#ifndef XML_DOC_HINCLUDED
#define XML_DOC_HINCLUDED

typedef struct Attribute_item{
charx Name;
charx Value;

} Attribute;

typedef struct XMLNode_item{

charx Name;

charx NodeType;

charx Value;

int ChildrenCount;

int ChildrenArraySize;

int AttributesCount;

int AttributesArraySize;

struct XMLNode_item *%xChildNodes;

struct Attribute_item x%xAttributes;
} XMLNode;

#define TRUE 1
#define FALSE 0

#define DOCUMENTNODE ”Document”

#define DECLERATION.NODE ” XmlDecleration”
#define ELEMENTNODE ” Element”

#define TEXTNODE ” Text”

#define TEXTNAME 7#text”

#define DOCUMENTNAME ” Main_Document”

XMLNodex xmlCreateNode (charx nodeType, charx name, charx value);
XMLNode* createStringElementNode (charx elementName, charx nodeValue);
XMLNode* createIntElementNode (char * elementName, int nodeValue);
XMLNode*x xmlAddChildNode (XMLNode *parentNode, XMLNode #childNode);
XMLNodex xmlGetChildNode (XMLNode sparentNode, charx childName);
Attributex xmlGetAttribute (XMLNode #node, charx attributeName);

chars xmlGetText (XMLNodex node) ;
void xmlAddAttribute (XMLNode #xmlNode, char xatrribute, char xvalue);
void xmlFree (XMLNode xnode) ;

#Hendif
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Listing 7: The methods to construct, inspect, and dispose of XML structures.

#define _GNUSOURCE
#include <stdio.h>

#include <stdlib .h>
#include <string.h>
#include ”xmlDoc.h”

//Copies the string from the wvalue into the wvalue for the field
void assignString (charsx field , charx value)

if (value == NULL)
xfield = NULL;
else

xfield= (charx)malloc ((strlen (value) + 1l)xsizeof(char));
memmove (* field , value, strlen (value));
(«field) [strlen (value)] = '"\0';
}
}

//Gets the first child of the node passed in as text
chars xmlGetText (XMLNode *node)

{
return node—>ChildNodes[0]—>Value;

//gets the attribute of a node with the mame passed in
Attributex xmlGetAttribute (XMLNode #node, charx attributeName)

int i = 0;
Attributex attribute = NULL;
for(i = 0; i < node—>AttributesCount; i++)

if (strcmp (node—>Attributes [i]—>Name, attributeName) == 0)

attribute = node—>Attributes [i];
break;
}
}

return attribute;

}

//Creates an empty new XML Node and returns it
XMLNode* createEmptyXMLNode ()
{
XMLNode* newNode = (XMLNode #)malloc(sizeof(XMLNode)) ;
newNode—>ChildrenCount = 0;
newNode—>ChildrenArraySize = 1;
newNode—>ChildNodes = (XMLNode *#)malloc(sizeof(XMLNodex)) ;
newNode—>AttributesCount = 0;
newNode—>AttributesArraySize = 1;
newNode—>Attributes = (Attribute xx)malloc(sizeof( Attributex));

//Set pointers to null by default?

newNode—>NodeType = '\0';
newNode—>Name = '\0';
newNode—>Value = '\0';

return newNode;

}
XMLNodex createStringElementNode (char* elementName, charx nodeValue)

XMLNode #elementNode = xmlCreateNode (ELEMENTNODE, elementName, NULL) ;
xmlAddChildNode (elementNode , xmlCreateNode (TEXTNODE, TEXTNAME, nodeValue));

return elementNode;

XMLNode* createlntElementNode (char * elementName, int nodeValue)
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XMLNode #*elementNode = xmlCreateNode (ELEMENTNODE, elementName, NULL) ;

char =xvalue;
int length = 0;
length = asprintf(&value, "%d”, nodeValue);

xmlAddChildNode (elementNode , xmlCreateNode (TEXTNODE, TEXTNAME, value));
free (value);

return elementNode;

}

//Create an XML Node with the type, name, and value assigned
XMLNodex xmlCreateNode (charx nodeType, charx name, charx value)
{
XMLNode* newNode = createEmptyXMLNode () ;
assignString (& (newNode—>NodeType) , nodeType) ;
assignString (&(newNode—>Name) , name) ;
assignString (& (newNode—>Value), value);

return newNode;

}
charx GetText (XMLNodex node)
{
return node—>ChildNodes[0]—>Value;
}

//Adds an attribute to the node passed in with the corresponding attribute/value pair
void xmlAddAttribute (XMLNode #xmlNode, char xatrribute, char xvalue)

if (xmINode—>AttributesCount == xmlNode—>AttributesArraySize)

xmlNode—>AttributesArraySize = 2 % xmlNode—>AttributesArraySize;
xmlNode—>Attributes = realloc (
xmlNode—>Attributes , xmlNode—>AttributesArraySize % sizeof(Attributesx));

}
xmlNode—>AttributesCount++;
xmlNode—>Attributes [xmINode—>AttributesCount — 1] = (Attribute x)malloc(sizeof( Attribute
)
assignString (&(xmlNode—>Attributes [xmINode—>AttributesCount — 1]—>Name), atrribute);
int valueLength = (int)strlen (value);
if (value [valueLength — 1] == '\n')
value [ valueLength — 1] = '_';

assignString (&(xmlNode—>Attributes [xmINode—>AttributesCount — 1]—>Value), value);

}

//Adds a child node to the parent node passed in
XMLNode #*xmlAddChildNode (XMLNode #parentNode, XMLNode xchildNode)

{
if (parentNode—>ChildrenCount == parentNode—>ChildrenArraySize)

parentNode—>ChildrenArraySize = parentNode—>ChildrenArraySize * 2;

parentNode—>ChildNodes =
realloc (parentNode—>ChildNodes, parentNode—>ChildrenArraySize % sizeof(XMLNodex)) ;

parentNode—>ChildrenCount++;
int currentChildIndex = parentNode—>ChildrenCount — 1;
parentNode—>ChildNodes [currentChildIndex] = childNode;

return childNode;

}

XMLNode*x xmlGetChildNode (XMLNode *parentNode, charx childName)

{

XMLNode *returnNode = NULL;
int i = 0;
for(i = 0; i < parentNode—>ChildrenCount; i++)
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if (strcmp (parentNode—>ChildNodes [ i]—>Name,

returnNode = parentNode—>ChildNodes[i];
break;

}
return returnNode;
¥

void freeAttribute (Attribute xattribute)

free (attribute —>Name) ;

free (attribute —>Value) ;
void xmlFree (XMLNode *node)

free (node—>Name) ;

free (node—>NodeType) ;

free (node—>Value) ;

int i = 0;
for (i=0; i < node—>AttributesCount; i++)

freeAttribute (node—>Attributes[i]);
}

i = 0;
for (i=0; i < node—>ChildrenCount; i++)

xmlFree (node—>ChildNodes[i]) ;
free (node—>ChildNodes) ;
free (node—>Attributes);

free (node) ;

childName) == 0)
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A.5.3 xmlWriter

The methods used to record XML are contained within zmiWriter.h and zmlWriter.c. Listing 8
displays the source code of amlWriter.h which can be included in order to reference the writing

portion of the XML library. Listing 9 presents the actual implementation of the methods used to
write XML to file.

Listing 8: The methods exposed by the xmlWriter.h file.

#ifndef XML_WRITER_H_INCLUDED

#define XML-WRITER_H.INCLUDED

#include ”xmlDoc.h”

void xmlPrint (XMLNode #node) ;

void xmlWrite (XMLNode #node, FILE xoutputFile);
#endif

Listing 9: The methods available to write XML to a FILE pointer.

#include <stdio.h>
#include <stdlib .h>
#include <sys/time.h>
#include <string.h>
#include <time.h>
#include ”xmlWriter.h”
//Recursively zmlPrints the wvalues of the node passed in with
//a margin based on the level passed in
void xmlPrintXMLHelper (XMLNode #*node, int level, FILE xoutputFile)
{
int i = 0;
char margin[100] = ”\07;
while(i < level % 2)
{
margin[i] = '_';
i+
margin[level *x 2] = '"\0';
if (strcmp (node—>NodeType, DOCUMENTNODE) == 0)
{
int j =0;
while(j < node—>ChildrenCount)
xmlPrintXMLHelper (node—>ChildNodes[j], 0, outputFile);
J++
else if(strcmp(node—>NodeType, DECLERATION.NODE) == 0)
fprintf (outputFile , "%s<?%s_%s.?>\n” ,margin, node—>Name, node—>Value);
else if(strcmp(node—>NodeType, TEXT NODE) == 0)
fprintf (outputFile, "%s”, node—>Value);
else if(strcmp(node—>NodeType,ELEMENT NODE) == 0)
{
fprintf (outputFile, "%s<%s”, margin, node—>Name) ;
i = 0;
while (i < node—>AttributesCount)
fprintf(outputFile, ” %s=\"%s\””, node—>Attributes[i]—>Name, node—>Attributes[i]—>
Value) ;
i+
fprintf (outputFile, 7">7);
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if (node—>ChildrenCount > 0 && strcmp (node—>ChildNodes[0]—>NodeType ,ELEMENTNODE) == 0)

fprintf(outputFile, 7\n”);
else
margin [0] = '\0';
i=0;
while (i < node—>ChildrenCount)
xmlPrintXMLHelper (node—>ChildNodes [i], level+41, outputFile);
i+4;

fprintf (outputFile, "%s</%s>\n” ,margin, node—>Name) ;
}
}

//Recursivley zmlPrints ths XML node's wvalues to the screen
void xmlPrint (XMLNode *node)

xmlPrintXMLHelper (node, 0, stdout);
}

//Recursivley zmlPrints ths XML node's walues to file
void xmlWrite (XMLNode #node, FILE xoutputFile)

xmlPrintXMLHelper (node, 0, outputFile);
fprintf (outputFile, ”\n”);

81

www.manharaa.com



A.5.4 xmlReader

The methods used to replay XML are contained within xmlReader.h and zmlReader.c. Listing 10
displays the source code of xmlReader.h which can be included in order to reference the reading
portion of the XML library. Listing 10 presents the actual implementation of the methods used to

read XML from file and build XML structures in memory to traverse the elements and attributes.

Listing 10: The methods exposed by the xm1Reader.h file.

#ifndef XML_READER _H INCLUDED
#define XML_READER H_INCLUDED
#include ”xmlDoc.h”

XMLNode *xmlRead (charx file);
#endif

Listing 11: The methods to read XML files and recreate XML structures.

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <string.h>
#include <time.h>
#include ”xmlReader.h”
#include ”xmlWriter.h”

//The zml array from file held in memory

char xxmlArray;

//The current index we are reading from the zml array
int chrPtr = 0;

charx myFileName;

//Load the zml from the file passed in into the zml array in memory
void loadXMLFile(charx fileName)
{

//Open the file and determine its length

FILE xxmlFile = fopen(fileName, 71r”7);

fseek (xmlFile, 0, SEEK_END);

long fileSize = ftell (xmlFile);

rewind (xmlFile);

//instantiate and populate the zml array
xmlArray = (charx)malloc(fileSize *sizeof(char));
int length = 0;

length = fread (xmlArray, 1, fileSize , xmlFile);

//close the file
fclose (xmlFile);

}

//reads back from the length of the text to the current index
//and returns it as a string
char *readFromXML(int length)
{
//Create a new string to hold the wvalue int
char xfield = (chars*)malloc((length + 1)% sizeof(char));
//Copy the zml array starting from 'z' characters back until the current char
strncpy (field , (xmlArray + chrPtr) — length, length);
//Delimiate the last character so it terminates
field [length] = '\0';

//Return the read field
return field;

}

//moves the current character pointer wuntil it finds a mon space, tab or newline character
void clearWhiteSpace ()
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while ((xmlArray [chrPtr] = '_' || xmlArray[chrPtr] = '\t' || xmlArray[chrPtr] = '\n')
&& xmlArray [chrPtr] != '\0"')

chrPtr++;

//moves the current character pointer until it finds the character passed in or gets to
the end of the array
void moveToChar(char target)

while (xmlArray [chrPtr] != target && xmlArray[chrPtr] != '\0')
chrPtr++;
¥

//Returns a string of all of the characters until the next space or '>' character
charx getName ()

//First move through all the white space
clearWhiteSpace () ;

//Loop until the nezt space or a closing tag
int nameLength = 0;
while (xmlArray [chrPtr] != '>' && xmlArray[chrPtr] != '_")
{
namelLength+4;
chrPtr4++;

//Read the characters from the array
charx returnValue = readFromXML (nameLength) ;

//Return the new string
return returnValue;

}

//Gets the key/value pairs of the atributes wuntil it
//gets to the end of the encapsulating tag.
void getAttributes (XMLNode #*xmlNode)

//Clear the white space
clearWhiteSpace () ;

//Loop until we get to the end of the current tag we are in
while (xmlArray [chrPtr] = '>")

//The attributes end with an equals sign and can not contain spaces
int textLength = O0;
while (xmlArray [chrPtr] != '_' && xmlArray[chrPtr] != '=")

chrPtr++;
textLength++;

}

//read the attribute
char* attribute = readFromXML (textLength);

//The value starts after a quotation mark after the equals sign
moveToChar('=");

moveToChar('” ') ;

chrPtr++;

//Loop until we get to the end of the quotation mark
textLength =0;
while (xmlArray [chrPtr] 1= ' ")

chrPtr++;
textLength-++;

//read the wvalue
char % value = readFromXML (textLength);
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//Add the attribute/value pair to the attributes of the node
xmlAddAttribute (xmINode, attribute, value);

//clean up the buffers
free (attribute);
free (value);

//Continue moving on
chrPtr++;
clearWhiteSpace () ;
}
¥

//Gets the wvalue of an XML declaration node
char* getDeclerationValue ()

//XML decleartion is the string between the question makr signs of an decleration node
clearWhiteSpace () ;

int length = 0;

int insideQuotation = FALSE;

//Loop until we finish reading outside of the quotes or we reach the question mark
while ((xmlArray [chrPtr] !'= '_' && xmlArray[chrPtr] != '?') || insideQuotation == TRUE)
{

length++;

chrPtr++;

//Everything inside of quotation marks is part of the decleration
if (xmlArray [chrPtr] = '7")

if (insideQuotation == TRUE)
{

insideQuotation = FALSE;
else

insideQuotation = TRUE;
}
}
}

//read the decleration
char xdeclerationvalue = readFromXML (length);

//return the decleration that was read
return declerationvalue;

}

//Get everything until the next node begins
charx getTextValue ()
{

//clear WhiteSpace () ;

int textLength = 0;

//Loop until the nezxt tag starts
while (xmlArray [chrPtr] != '<')

textLength++;
chrPtr++;

//Read the text
char xtextValue = readFromXML (textLength);

//Return the text that was read in
return textValue;

}

//Creates a new decleration node based on the decleration it reads
XMLNode *readXMLDeclerationNode ()
{

char* name = getName () ;

char* value = getDeclerationValue();

XMLNodex newNode = xmlCreateNode (DECLERATION.NODE, name, value);

free (name) ;
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free (value);
return newNode;

//Creates a new element node based on the name it reads
XMLNode *readXMLElementNode ()

{

char* name = getName/() ;
XMLNode* newNode = xmlCreateNode (ELEMENT NODE, name, NULL) ;
free (name) ;

return newNode;

}

//Creates a new text node based on the text that it reads
XMLNode *readXMLTextNode ()

{

charx textValue = getTextValue();
XMLNode* newNode = xmlCreateNode (TEXT_NODE, TEXTNAME, textValue);
free (textValue);

return newNode;

}

//Passes through the zml array and adds children to currently passed in node
void parseNode (XMLNode s#node)

{

//Save off the previous chr ptr in case white spaces should be part of the text wvalue
int prevChrPtr = chrPtr;
clearWhiteSpace () ;

//Loop wuntil the end of the file

while (xmlArray [chrPtr] != '"\0'){
//Check if war are at the beginning of a tag
if (xmlArray [chrPtr] = '<' && xmlArray [chrPtr + 1] != '/"){
//Check if we are reading an zml decleration mnode
chrPtr++;
if (xmlArray [chrPtr] = '?7'
//This muse be an zml decleration monde. Move passed the
//question mark just read in and get the decleration part.
chrPtr++4;

xmlAddChildNode (node, readXMLDeclerationNode());

//Move to the end tab
moveToChar('>");

//Move past the end tab and fall off
chrPtr++;
clearWhiteSpace () ;

else{
//This must be a regular element node. Read the element node
XMLNode* childNode = xmlAddChildNode (node, readXMLElementNode());

//Get the attributes for the element
getAttributes (childNode);

//Move to the closing tab
moveToChar( '>");

chrPtr++;

//Recursiviey call up and see if the current node has any children
parseNode (childNode) ;

//Now that we have all of its children, move past our closing tag.
clearWhiteSpace () ;

if (xmlArray [chrPtr] = '<'){
moveToChar ('>");
if (xmlArray [chrPtr] = '>"){
chrPtr++;
}
//Now are are passed our closing tag. See if we were are mot at our
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//parents closing tag and, if so, fall off.
clearWhiteSpace () ;
if (xmlArray [chrPtr] = '<' && xmlArray [chrPtr + 1]

break;

//We were not the
as a child.

last sub element of our parent.
}
}

else{
//move back to the beginning of this
chrPtr = prevChrPtr;
J/printf(” About to make text node, next 3 char are
zmlArray [chrPtr + 1], zmlArray[chrPtr + 2]);
//We are not at the beginning of a tag, so we must be

section

//the node. Read its text and fall off.
xmlAddChildNode (node, readXMLTextNode());
break;

}
}
}

//Reads in the file passed in and returns
XMLNode *xmlRead (charx file)
{

chrPtr = 0;

loadXMLFile( file);

it as an XML node

XMLNode *docNode = xmlCreateNode (DOCUMENTNODE, DOCUMENTNAME, NULL) ;

parseNode (docNode) ;
free (xmlArray) ;
return docNode;

}
#endif

= /")

"% c%ck%e ', xmlArray[chrPtr],

Loop again and add the next one

in the text
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A.6 The GDB Bridge

During the earliest stages of the development of the Distributed Application Debugger, T did
prototyping of some of the high priority features in order to prove that the features were feasible.
The most important of these was the GDB Bridge included in Listingl2. It was created in order
to experiment with launching GDB from within a running program and then controlling GDB by
duplicating its stdin, stdout, and stderr file descriptors.

After successfully creating a bridge to launch and control GDB from the command line, the code
was enhanced to be controlled by commands read in from a TCP port. Once this code was worked
out as a proof of concept, the Distributed Application Debugger specific development began, knowing

that remote GDB features could confidently be integrated into later.

Listing 12: The contents of the GDB Bridge prototype.

#include <mpi.h>
#include <stdlib .h>
#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <errno.h>

//Define some constants for read ability
#define TRUE 1

#define FALSE 0

#define QUIT_.COMMAND ” quit”

#define GDB.COMMAND ”gdb”

#define STRING_EQUALS_INDICATOR 0
#define NEWLINE ”\n”

#define SPACE ”.”

//Mazx size of read buffer
#define BUFFER_SIZE 1024

//Listen and Write socket
int list_s;
int conn_s;

//Default Port
int port = 4001;

//Streams representing the parent and
//child's perspective out incoming and outgoing
FILE* streamOutgoing;

FILE+* streamIncoming;

//Methods to read from and to a socket
ssize_t Readline(int sockd, void *vptr, size_t maxlen);
ssize_t Writeline (int sockd, const void xvptr, size_t n);

//Methods which will listen to the user and the child on a seperate thread
void childListener () ;
void tcpListen ();

//A sempahore which gets signaled to allow the main thread to ewzit
sem_t quitingSemaphore;

int main (int argc, const charx argv|[])
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if (arge == 2)

//Read the command line
port = atoi(argv[1l]);

//A buffer for genearl reading and writing a stream
char buffer [BUFFER.SIZE];

//The id being checked after the fork command
pid-t pid;

//The ends of the pipes for communication from the child to parent
//and parent to child
int fromChildPipe [2];
int fromParentPipe [2];

/* Create a pipe. File descriptors for the two ends of the pipe are placed in fds. */
pipe (fromChildPipe);
pipe (fromParentPipe);

/* Fork a child process. x/
pid = fork ();
if (pid == (pid-t) 0)

//Overwrite stdin, stdout, and stderror
close (0);
dup (fromParentPipe [0]) ;

close (1);
dup (fromChildPipe [1]) ;

close (2);
dup (fromChildPipe [1]) ;

//wait for an indication of a connection
fgets (buffer, sizeof (buffer), stdin);

//The string sent will be the argument for the gdb command
char xinputArg = strtok (buffer , NEWLINE) ;

//create the gdb command for the test file
char* gdbCommand [4];

gdbCommand [0] = ”"gdb”;

gdbCommand [1] = inputArg;

gdbCommand [2] = NULL;

//Shell out the gdb command
execvp (gdbCommand [0] , gdbCommand) ;

else

{
//Set streams for reading from and writing to the child
streamIncoming = fdopen (fromChildPipe[0], 7r”);
streamOutgoing = fdopen (fromParentPipe [1], "w");

//Initialize the semaphore to block wuntil signaled
sem_init (&quitingSemaphore, 0, 0);

//Launch threads for the child listen and the tcp listen
pthread_t childThreadld, tcpListenThreadld;
pthread_create(&childThreadld , NULL, (void x*)childListener , NULL);
pthread_create(&tcpListenThreadld , NULL, (void =x)tcpListen, NULL);

//Wait till the tcp listen thread tells wus its time to exit
sem_wait(&quitingSemaphore) ;

//Ezit the application

}

return 0;

exit (0);
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//Thread for listen to the tcp port
void tcpListen ()

struct sockaddr_in servaddr;
char sendptr;

char buffer [BUFFER.SIZE];
char =xtoken;

/* Create the listening socket x/

if ( (list-s = socket (AF.INET, SOCKSTREAM, 0)) < 0 ) {
fprintf(stderr, "Error_creating_listening._socket.\n”);
exit (EXIT_FAILURE) ;

/* Set all bytes in socket address structure to

zero, and fill in the relevant data members */
memset(&servaddr , 0, sizeof(servaddr));
servaddr .sin_family = AF_INET;

servaddr .sin_addr.s_addr
servaddr.sin_port

htonl (INADDRANY) ;
htons(port);

/#* Bind our socket addresss to the
listening socket, and call listen () =/

if ( bind(list_-s , (struct sockaddr x) &servaddr, sizeof(servaddr)) < 0 ) {

fprintf(stderr, ”Error_calling._bind()\n”);
exit (EXIT_FAILURE) ;

printf(” Listening_on_port.%d\n”, port);
//Listen for a connection

if ( listen (list-s, 1024) < 0 )
fprintf(stderr, ”"Error_calling._listen ()\n”);
exit (EXIT_FAILURE) ;

}

/#* Enter an infinite listen loop #*/

if ( (conn_s = accept(list_s , NULL, NULL) ) < 0 ) {
fprintf(stderr, ”Error_calling_accept()\n”);
exit (EXIT_.FAILURE) ;

//Flag which indicates that we have gotten the gdb command
int started = FALSE;

//Create some pointers to the commands comming in
charx inputCommand0;
charx inputArg;

//Loop forever
while ( 1 )

/#* Retrieve an input line from the connected socket
then simply write it back to the same socket. */
Readline (conn_s, buffer, BUFFERSIZE — 1);

//Strip off the newline at the end
token = strtok (buffer , NEWLINE) ;

//Make sure we got something
if (token == NULL)
{

continue;
}
//See if we have actually started the GDB debugger yet
if (started == FALSE)

//We have not started the gdb debugger, check if the wuser typed
//the gdb command and the file to debug
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inputCommand0 = strtok (token, SPACE);
inputArg = strtok (NULL, SPACE);

if (strcmp (inputCommand0, GDB.COMMAND) == STRING_EQUALS_INDICATOR &&
inputArg != NULL)
{

//the user sent the gdb command to start, send the file to debug to the child
started = TRUE;

fprintf (streamOutgoing, "%s\n”, inputArg);
fflush (streamOutgoing);

//Indicate that conmection has been made
printf (”GDB_session _begun_for _%s\n”, inputArg);
continue;

}

else

//We either didn't get the gdb command, or we didn't get a file, continue
looping
continue;
}
}

//Pass the command read in to the child process
fprintf (streamOutgoing, "%s\n”, token);
fflush (streamOutgoing);

//Check if the user said to quit
if (strcmp (token, QUIT.COMMAND) == STRING_EQUALS_INDICATOR)

printf(” Quit_-detected._._.Closing._now.\n”);

//Time to quit, release the semaphore which will signal the main thread to ezit
sem_post(&quitingSemaphore) ;
break;

}

else

usleep (100);

}

/* Close the connected socket x/

if ( close(conn.s) < 0 ) {
fprintf(stderr, ”Error_calling._close ()\n”);
exit (EXIT_FAILURE) ;

}

void childListener ()
{

//Read one char at a time from child infinitly.

char* echoBuff = (charx)malloc(sizeof(char));
while (1)

char c;

¢ = getc(streamIncoming);

fflush (streamIncoming) ;

//white each character out to the tcp port
echoBuff [0] = c;
Writeline (conn_s, echoBuff, 1);
usleep (100) ;
}
}

ssize_t Readline(int sockd, void *vptr, size_-t maxlen) {
ssize_t n, rc;
char c, *xbuffer;

buffer = vptr;

for ( n = 1; n < maxlen; nt+ )
1

if ( (rc = read(sockd, &c, )§ = 1) {
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sbuffer++ = c;
if (¢ = "\m')
break;

else if ( rc = 0 ) {
if (n=1)
return O0;
else
break;

else {
if ( errno == EINTR )
continue;

return —1;

}

*buffer = 0;
return n;

}

/*  Write a line to a socket x/
ssize_t Writeline (int sockd, const void xvptr, size_t n)
{

size_t nleft ;

ssize_t nwritten ;

const char sxbuffer;

buffer
nleft

vptr;
n;

while ( nleft > 0 ) {
if ( (nwritten = write(sockd, buffer, nleft)) <= 0 ){
if ( errno == EINTR )
nwritten = 0;
else
return —1;

nleft —= nwritten;
buffer 4= nwritten;

}

return n;

A.7 The Bridge

In order to accommodate network configuration in which The Call Center is running on a computer
which is contained within a closed private network, a supporting application called The Bridge
was developed. It supports three modes, client, server, and bridge, which were used in simulating
connecting strings of computers together in some of the early days of development. In all modes,
The Bridge opens two ports and reads from one and writes to the other.

In client mode, the user passes a —c in at the command line along with the address and port
of a computer it intends to communicate with. Upon starting up in this mode, The Bridge makes
an outgoing connection to the address and port passed in, and then begins to read in from stdin.
Anything input from the console is read and immediately written to the outgoing socket.

In server mode, the user passes a —s in at the command line along with a port to listen to incoming

connections on. Upon starting up in this mode, The Bridge listens on the port passed in and, upon
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receiving an incoming connection, writes anything read in from it to stdout.

Client mode and server mode were used as mostly testing modes for the third, and most important,
mode: bridge mode. When run in bridge mode, The Bridge takes in -b at the command line along
with an address and port, as in client mode, and an incoming port, as in server mode. Upon starting
up in bridge mode, The Bridge writes whatever it reads from the incoming connection’s socket to the
outgoing connection’s socket and, likewise, writes whatever it reads from the outgoing connection’s
socket to the socket acquired from the incoming connection.

It can not be understated how important The Bridge code is to the Distributed Application
Debugger. It was one of the first features written because, without it, The Client and Call Center
would not be able to connect in order to make remote debugging possible. All three modes were used
together during the prototyping stage to work out the technical details of launching a programming
after making a series of SSH connections and then passing command lines from one computer’s stdin
to another computer’s stdout via TCP connections. The source code for The Bridge is included in

Listing 13.

Listing 13: The Bridge source code used to connect The Client to The Call Center.

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <netdb.h>

#include <semaphore.h>

#include <pthread.h>

#include " Headers/communication.h”
#include ”Headers/booleanLogic.h”

#define STRING_EQUALSINDICATOR 0
#define CLIENT MODE ”—c”
#define BRIDGEMODE ”—b”
#define SERVERMODE ”—s”

//Structure to pair an fd to read from and an fd to write to
struct pipePair_item

int In;
int Out;
s

typedef struct pipePair_item pipePair;

//Helper Methods

void PipeMessages(void *value);

void RunClientMode (char* outgoingPath, int outgoingPort);

void RunServerMode(int incomingPort);

void RunBridgeMode(int incomingPort, charx outgoingPath, int outgoingPort);
void SetSocketOptions(int xsocketPtr);

void InitializeSockAddr (struct sockaddr_in saddress, in_addr_t path, int port);
pipePair* CreatePipePair(int in, int out);

//Semaphore to wait on to close out the application
sem_t quitingSemaphore;
int main(int argc, charxxargv)

//First argument is the mode —c for client, —b for bridge, —s for server
if (strcmp (argv [1], CLIENTMODE) == STRING_EQUALS_INDICATOR)
{
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//Client mode — arg 2 is the port to connect to, arg 3 is the ip address
//RunClientMode (argv [8], atoi(argv/[2]));
if (arge == 3)

//they did not include the server ipaddress, assume we want to use our own
charx ipAddress = (charx)malloc(50«xsizeof(char));
GetPrimarylIp (ipAddress, 50) ;
printf(’running_alternate_version ,_ipaddress_is _%s\n”, ipAddress);
RunClientMode (ipAddress, atoi(argv[2]));
free (ipAddress);

}

else

RunClientMode (argv [3], atoi(argv[2]));

}
else if(strcmp(argv[1l], SERVERMODE) == STRING_EQUALS_INDICATOR)

//Server mode, arg 2 is the port to listen to
RunServerMode (atoi (argv[2]));

}
else if(strcmp(argv[1], BRIDGEMMODE) == STRING_EQUALS_INDICATOR)
{
//Bridge mode, arg 2 is the incoming port, arg 3 & 4 are the outgoing ip address
and port
RunBridgeMode (atoi (argv[2]), argv[3], atoi(argv[4]));
}

return 0;

}

/*Establishes an outgoing comnection on the specified
port and address and pipes all data from stdout to itx/
void RunClientMode (char* outgoingPath, int outgoingPort)

//Create outgoing connection

int socketOut = CreateOutgoingConnection (outgoingPath ,outgoingPort);
if (socketOut == FALSE)

return;

//Start a background thread to pipe messages from stdin to the outgoing port
pthread_t threadld;

pthread_create(&threadld , NULL, (void =*)PipeMessages, CreatePipePair(fileno (stdin),
socketOut));

//Post for just 1 thread to release before we finish
sem_init(&quitingSemaphore, 0, 0);
//Wait until the piping thread releases to return
sem_wait(&quitingSemaphore) ;

//clean up the connection created.
close (socketOut) ;

}

/*Establishes an incoming comnnection on the specified port
and pipes all data from it to stdoutx/

void RunServerMode(int incomingPort)

//Create an incoming comnnection

int socketIn = CreatelncomingConnection(incomingPort);
if (socketIn = FALSE)
return;

//Start a background thread to pipe messages from the incoming port to stdout
pthread_t threadld;

pthread_create(&threadld , NULL, (void =*)PipeMessages, CreatePipePair(socketIn, fileno (
stdout)));

//Post for just 1 thread to release before we finish
sem_init(&quitingSemaphore, 0, 0);

//Wait until the piping thread releases to return
sem_wait(&quitingSemaphore) ;

//clean up the connection created.
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close (socketIn);

/*Establishes an incoming connection on the specified port and an outgoing
connection on port and ipaddress specified and ports messages between them.x/
void RunBridgeMode(int incomingPort, chars outgoingPath, int outgoingPort)

{
//Create an incoming connection
int socketIn = CreatelncomingConnection (incomingPort);
if (socketIn = FALSE)
return;
//Create an outgoing comnection
int socketOut = CreateOutgoingConnection (outgoingPath ,outgoingPort);
if (socketOut == FALSE)
close (socketIn);
return;
}
pthread_t clientThreadId, serverThreadld;
//Start 2 threads to pipe incoming data from either direction to the other conmection
pthread_create(&clientThreadld , NULL, (void x)PipeMessages, CreatePipePair(socketIn ,
socketOut));
pthread_create(&serverThreadld, NULL, (void *)PipeMessages, CreatePipePair (socketOut,
socketIn));
sem_init(&quitingSemaphore, 0, 0);
//Wait until both piping threads releases to return
sem_wait(&quitingSemaphore) ;
//Clean up the connections created.
close (socketOut);
close (socketIn);
}

//Creates a structure pairing an input fd with an output fd
pipePair* CreatePipePair(int in, int out)

{
//Create the pair
pipePairx pair = (pipePairx*)malloc(sizeof(pipePair));
//Assign their values
pair—>In = in;
pair—>Out = out;
//Return it
return pair;
}

//Takes in a pipePair and cycles through reading from the input
//side and writing that data to its output side.
void PipeMessages(void *value)
{
//The input value is exzpedted to be a pipe pair
pipePair xpair = (pipePair x)value;

//Create a buffer to read data into
int bufferSize = 8192;
char inputBuffer[bufferSize];

int bytesRead = 0;
while (1)
{
//Read in from the input side
bytesRead = read(pair—>In, inputBuffer, bufferSize);

if (bytesRead < 0)
break;

//Write to the output side
if (write (pair—>Out, inputBuffer, bytesRead) < 0)
break;
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//Notify the sempahore that we are no longer piping
sem_post(&quitingSemaphore) ;

//Clean up the wvalue passed in.
free (pair);
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Appendix B

The Runtime

The contributions that The Runtime makes in order to provide the user with useful debugging
information is detailed in Section 3.3. This appendix is provided to give the user some insight into
select sections of The Runtime’s code as well as to provide a reference to the instructions on how to

integrate The Runtime into a user’s code.

B.1 mpidebug.h

The mpiddebug.h header file contains the signatures of the methods that The Runtime uses when
redirecting the user’s MPI code. It is included in the mpi.h file that the user includes in step 2 of the
steps to compiling The Runtime detailed in Appendix B.3. The contents of mpidebug.c are omitted
from this Appendix, but Listing 14 shows the names of the methods that the user’s MPI methods

will be replaced with.
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Listing 14: mpidebug.h source code.

#ifndef MPIDEBUG._
#define MPIDEBUG._

int _MPI_Init (char pname[100], int line, int xargc, char ssxargv);

int _MPI_Finalize (char pname[100], int line);

int _MPI_Comm_rank(char pname[100], int line, MPI.Comm comm, int srank);
int _MPI_Comm_size(char pname[100], int line, MPI.Comm comm, int =*size);

int _MPI_Send(char pname[100], int line, void xbuf, int count,
MPI_Datatype datatype, int dest, int tag, MPI.Comm comm)

int _MPI_Recv(char pname[100], int line, void xbuf, int count,
MPI_Datatype datatype, int src, int tag, MPIComm comm,
MPI_Status xstatus);

)

int _MPI_ISend (char pname[100], int line, void *buf, int count,

MPI_Datatype datatype, int dest, int tag, MPIComm comm, MPI_Request x*
request ) ;

int _MPI_IRecv(char pname[100], int line, void xbuf, int count,
MPI_Datatype datatype, int src, int tag, MPI.Comm comm, MPI_Request *request
)

int _MPI_Wait(char pname[100], int line, MPI_Request xrequest, MPI_Status xstatus);
int _MPI_Barrier (char pname[100], int line, MPI.Comm comm) ;

int _MPI_Probe(char pname[100], int line, int src, int tag, MPI.Comm comm, MPI_Status =
status);

int _MPI_Probe(char pname[100], int line, int src, int tag, MPI.Comm comm, MPI_Status =x
status);

int _MPI_IProbe(char pname[100], int line, int src, int tag, MPI.Comm comm, int xflag,
MPI_Status xstatus);

void* StdOutRedirectThread (void* value);

#endif

97

www.manharaa.com




B.2 Redirecting Stdout

The Runtime redirect’s its stdout file descriptor in order to be able to send what the user meant
to print to the screen back to The Client. First, it calls the method RedirectStdOut which pipes
whatever is written to stdout to a different file descriptor. The system then spawns off a dedicated
thread to listen to the new file descriptor and send back messages to The Client which let it know
what has been written to stdout. Listing 15 contains the two methods used to first redirect stdout

on the main thread, and the worker thread tasked with sending back messages to The Client.

Listing 15: The code used to redirect The Runtime’s stdout back to The Client.

void RedirectStdOut ()
int stdOutDupResult = dup(STDOUT_FILENO) ;

//Ezit out of the original one
if ( pipe(-out_pipe) != 0 ) {
exit (1);

}

//Redirect the write side
dup2(-out_pipe[1], STDOUT_FILENO) ;

close (—out_pipe [1]);
//Set the stdout buffer to autoflush
setvbuf(stdout , NULL, _IONBF, 0);

//Listens to std out and sends its contents out as a serialized message
void* StdOutRedirectThread (void *value)
{

//setup structures to peek at the read queue from

fd_set rfds;

struct timeval tv;

int retval;

int bytesRead;

int bufferSize = 8192;

char readBuffer [bufferSize];

while (1)

FD_ZERO(&rfds) ;
FDSET(-out_-pipe [0], &rfds);

tv.tv_sec = 2;

tv.tv_usec = 0;

//wait up to 2 seconds to read

retval = select (-out_pipe[0] + 1, &rfds, NULL, NULL, &tv);

//Check if there was anything in the output buffer
if(retval > 0)

bytesRead = read(-out_pipe[0], readBuffer, bufferSize);
if (bytesRead > 0)//It better be greater than 1!

//Write out a console message to the users.
writeToClient (serializeConsole (readBuffer, bytesRead, _rank,
_sohReplace, _partitionReplace, _eotReplace));

¥
}
//Nothing read, check if we finalized yet
else if( _finalized == TRUE)

FD_ZERO(&rfds) ;
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FD_SET(-out_pipe [0], &rfds);

tv.tv_sec = 2;

tv.tv_usec = 0;

retval = select (-out_pipe[0] + 1, &rfds, NULL, NULL, &tv);

if(retval > 0)
continue;

else
//Nothing in the stdout buff and we finalized , time to finish this thread
break;

}
}

sem_post(& _finalizedNotification);
return O0;

}

B.3 Compiling The MPI Runtime

This section deals with the four step process needed to compile an MPI project with the correct
libraries in order to allow for The Distributed Application Debugger’s Client and Call Center to be

able to interact with it.

1. Copy the MpiFiles directory to your root directory.

The MpiFiles directory contains all of the files needed in order to compile your project. This
directory just needs to be copied to your root directory one time and then, in order to inject
The Distributed Application Debugger Runtime component, you just need to put your project
files in this folder. Inside of this folder is a bin directory which will be the destination of all the

binaries complied using the Makefile in step 4.

2. Create .distributed ApplicationDebugger.conf.

There is a hidden file called .distributedApplicationDebugger.conf which The Call Center
looks for in order to know where to find the MpiFiles/bin directory created in Step 1. This file
needs to just be created once and is expected to be placed in the user’s root directory. For
example, for user mjones the file would be placed in /home/mjones and contain the following
line:

/home/mjones/MpiFiles/bin/

3. Include mpi.h.

As detailed in section 3.3.1 the user needs to include the local mpi.h in their mpi files instead
of the installed real framework mpi.h. This file will inject The Runtime into the code and
then do all of the pre and post processing used to utilize the tool. In order to organize the
header files, the MpiFiles includes the needed mpi.h in a Headers subdirectory, so if the files

are included in the root MpiFiles directory, the included file would be "Headers/mpi.h". The
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file text.c included in the MpiFiles directory can be used as a sample for reference.

4. Run the Makefile from the command line.

After including the mpi .h file included in the MpiFiles directory, the user needs to compile their
application with the Distributed Application Debugger’s assemblies. A Makefile to compile
with is included within this directory too and its contents are shown in Listing 16. In order
indicate the file to compile with the MPI runtime, the user must place the file in the MpiFiles
directory and then run the make command with the name of the file to include. Assuming that
the user is compiling from their root directory, the MpiFiles directory is located there and the

file to debug is called testParDev.c the command line to make the file would be:
make -C MpiFiles/ File=testParDev

Note that the .c extension is NOT included in the command line, just the file name. The
Makefile compiles all of the needed assemblies, including the XML, collection, parsing, and
validation libraries and then compiles the user’s code. The important line of the Makefile is

line 21 which reads:
mpicc -g -s -Wall -00 -c -o $(FILE).o -DMPIDEBUG $(FILE).c

The -DMPIDEBUG token means that when the header information from the mpi.h file illustrated
in Figure 3.28 is compiled, that the debug.h and mpidebug.h files will be included as well.
These files redirect the calls to the MPI library to intermediary libraries prefaced with under-
scores as illustrated in Figure 3.30. These methods wrap the standard four step debugging

process around each call that is described in Section 3.3.4 which allows the entire system to work.
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Listing 16: The Makefile included with the MPI runtime files.

1 # usage: make clean

2 # make FILE=test—file —name

3 # make run FILE=test—file —mname DATA=data—file —name

4

5 all

6 gce —Wall —0O3 —Wno—unused —c —o XML/obj/xmlDoc.o XML/xmlDoc.c

7 gce —Wall —0O3 —Wno—unused —c¢ —o XML/obj/xmlReader.o XML/xmlReader.c
8 gce —Wall —0O3 —Wno—unused —c¢ —o XML/obj/xmlWriter.o XML/xmlWriter.c
9 gcec —Wall —O3 —Wno—unused —c —o obj/dictionary .o dictionary.c

10 gcec —Wall —0O3 —Wno—unused —c —o obj/DADParser.o DADParser.c

11 gcec —Wall —O3 —Wno—unused —c —o obj/communication.o communication.c
12 gce —Wall —O3 —Wno—unused —c¢ —o obj/collections.o collections.c

13 mpicc —Wall —03 —Wno—unused —c —o obj/mpiUtils.o mpiUtils.c

14 mpicc —Wall —0O3 —Wno—unused —c —o obj/mpiXML.o mpiXML. c

15 mpicc —Wall —O0 —Wno—unused —c —o obj/mpiValidate.o mpiValidate.c
16 mpicc —Wall —O0 —Wno—unused —c —o obj/mpiSerialize.o mpiSerialize.c
17 mpicc —Wall —O0 —Wno—unused —c —o obj/gdbAttach.o gdbAttach.c

18 mpicc —Wall —O0 —Wno—unused —c —o obj/mpidebug.o mpidebug.c

19 strip XML/obj/*.0 —S

20 strip obj/*.0 —S

21 mpicc —g —s —Wall —00 —c¢ —o $(FILE).o —DMPIDEBUG $(FILE).c

22 mpicc —o bin/$(FILE) $(FILE).o XML/obj/*.0 obj/*.0 —Ilpthread

23 run:

24 ./$(FILE) $(DATA)

25

26  clean:

27 ™m —f *.0

28 rmo—f

29 ™ —f obj/*.0

30 ™ —f obj/*.~

31 rm —f XML/obj/*.0

32 rm —f XML/obj/*.~

33 rm —f Headers/+.x~
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Appendix C

MPI Serializing

This appendix contains the examples illustrating the schemas of each of the twelve MPI commands
supported by the Distributed Application Debugger. Listings 17-28 show what the XML serialized

versions of each of the commands looks likes when saved during a Record session.

Listing 17: A serialized MPI_Init() command.

<MPI_INIT rank="0" commandld="1" dateTime="Mon Mar 04 08:55:15 2013 7>
<returnvalue >0</returnvalue>
</MPIINIT>

Listing 18: A serialized MPI_Comm._rank() command.

<MPIRANK rank="0" commandld="2" dateTime="Mon Mar 04 08:55:15 2013 ">
<parameters>
<comm>1140850688 < /comm>
</parameters>
<returnvalue >0</returnvalue>
</MPLRANK>

Listing 19: A serialized MPI_Comm._size() command.

<MPI_SIZE rank="0” commandId="3" dateTime="Mon Mar 04 08:55:15 2013 ">
<parameters>
<comm>1140850688 < /comm>
</parameters>
<returnvalue >0</returnvalue>
</MPI_SIZE>
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Listing 20: A serialized MPI_Send() command.

<MPILSEND rank="0” commandld="4" dateTime="Mon Mar 04 08:55:15 2013 ”>
<parameters>
<buf>
<value>0</value>
<value >—2147483648</value>
<value >2147483647</value>
<value >356456</value>
<value >765</value>
<value >68378376</value>
<value >67787</value>
<value >17636</value>
<value >585356</value>
<value >253636</value>
</buf>
<count>10</count>
<datatype>MPIINT</datatype>
<dest >1</dest>
<tag>10</tag>
<comm>1140850688 < /commi>
</parameters>
<returnvalue >0</returnvalue>
</MPILSEND>
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Listing 21: A serialized MPI_Recv() command.

<MPIRECV rank="0" commandld="6" dateTime="Sun Aug 26 21:33:10 2012 ">
<parameters>
<buf>
<value>H</value>
<value>e</value>
<value>l</value>
<value>l</value>
<value>o</value>
<value> </value>
<value>W</value>
<value>o</value>
<value>r</value>
<value>l</value>
<value>d</value>
<value></value>
</buf>
<count >12</count>
<datatype>MPI.CHAR</datatype>
<src>1</src>
<tag>10</tag>
<comm>1140850688 < /comm>
<status>
<MPI.SOURCE>1</MPI. SOURCE>
<MPI.TAG>10</MPLTAG>
<MPILERROR>0</MPI.ERROR>
</status>
</parameters>
<returnvalue >0</returnvalue>
</MPILRECV>
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Listing 22: A serialized MPI_Isend() command.

<MPIISEND rank="0" commandld="42”" dateTime="Sun Aug 26 21:33:10 2012 ">
<parameters>
<buf>
<value>H</value>
<value>e</value>
<value>l</value>
<value>l</value>
<value>o</value>
<value> </value>
<value>W</value>
<value>o</value>
<value>r</value>
<value>l</value>
<value>d</value>
<value></value>
</buf>
<count >12</count>
<datatype>MPI.CHAR</datatype>
<dest>1</dest>
<tag>10</tag>
<comm>1140850688 < /comm>
<request >0</request>
</parameters>
<returnvalue >0</returnvalue>
</MPIISEND>

Listing 23: A serialized MPI_Irecv() command.

<MPIIRECV rank="0” commandld="43" dateTime="Sun Aug 26 21:33:10 2012 7>
<parameters>
<count >12</count>
<datatype>MPI.CHAR</datatype>
<sre>1</src>
<tag>10</tag>
<comm>1140850688 < /comm>
<request>1</request>
</parameters>
<returnvalue >0</returnvalue>
</MPIIRECV>
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Listing 24: A serialized MPI_Probe() command.

<MPI_Probe rank="0" commandId="5" dateTime="Sun Aug 26 21:33:10 2012 7>
<parameters>
<src>1</sre>
<tag>10</tag>
<comm>1140850688 < /comm>
<status>
<MPILSOURCE>1</MPI.SOURCE>
<MPI.TAG>10</MPLTAG>
<MPI.ERROR>0< /MPI ERROR>
</status>
</parameters>
<returnvalue >0</returnvalue>
</MPI_Probe>

Listing 25: A serialized MPI_Iprobe() command.

<MPI_IProbe rank="0" commandld="41" dateTime="Sun Aug 26 21:33:10 2012 ”
>
<parameters>
<src>1</sre>
<tag>10</tag>
<comm>1140850688 < /comni>
<flag >0</flag>
<status>
<MPI_SOURCE>2< /MPI. SOURCE>
<MPLTAG>0</MPLTAG>
<MPILERROR>0</MPI.ERROR>
</status>
</parameters>
<returnvalue >0</returnvalue>
</MPI_IProbe>

Listing 26: A serialized MPI_Wait() command.

<MPILWAIT rank="0" commandld="44" dateTime="Sun Aug 26 21:33:10 2012 7>
<parameters>
<request >0</request>
<status>
<MPILSOURCE>2< /MPI.SOURCE>
<MPI.TAG>0</MPLTAG>
<MPI.ERROR>0</MPI ERROR>
</status>
</parameters>
<returnvalue >0</returnvalue>
</MPLWAIT>
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Listing 27: A serialized MPI_Barrier() command.

<MPI_Barrier rank="0” commandld="7" dateTime="Sun Aug 26 21:33:10 2012 ”
>
<parameters>
<comm>1140850688 < /comm>
</parameters>
<returnvalue >0</returnvalue>
</MPI_Barrier>

Listing 28: A serialized MPI_Finalize() command.

<MPI_FINALIZE rank="0" commandId="102" dateTime="Sun Aug 26 21:33:10
2012 7>
<returnvalue >0</returnvalue>
</MPI_FINALIZE>
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